Question Number 212844 by efronzo1 last updated on 25/Oct/24
$$\:\:\:\cancel{\downharpoonleft}\underline{\:} \\ $$
Commented by AlagaIbile last updated on 29/Oct/24
$$\:{det}\left({S}^{\mathrm{2}} \right)\:=\:{det}^{\mathrm{2}} \left({S}\right)\:=\:\mathrm{36} \\ $$$$\:{det}\left({S}\right)\:=\:\pm\:\mathrm{6} \\ $$$$\:{By}\:{C}-{H}\:{Theorem}: \\ $$$$\:\boldsymbol{{S}}^{\mathrm{2}} \:−\:{tr}\left(\boldsymbol{{S}}\right)\:\boldsymbol{{S}}\:+\:\left(\pm\mathrm{6}\right)\:=\mathrm{0} \\ $$$$\:{Introduce}\:{trace}\:{to}\:{d}\:{eqn} \\ $$$${tr}\left({S}^{\mathrm{2}} \right)−{tr}^{\mathrm{2}} \left({S}\right)+\mathrm{2}\left(\pm\mathrm{6}\right)=\mathrm{0} \\ $$$$\:\mathrm{13}\:−\:{tr}^{\mathrm{2}} \left({S}\right)\:\pm\:\mathrm{12}\:=\:\mathrm{0} \\ $$$$\:{tr}\left(\boldsymbol{{S}}\right)\:=\:\pm\:\mathrm{5},\:\pm\:\mathrm{1} \\ $$$$\:{For}\:{trace}\left(\boldsymbol{{S}}\right)\:=\:\pm\:\mathrm{5} \\ $$$$\:\therefore\:\:\pm\mathrm{5}\boldsymbol{{S}}\:=\:\boldsymbol{{S}}^{\mathrm{2}} \:+\:\mathrm{6}\boldsymbol{{I}}_{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{{S}}\:=\:\pm\:\begin{bmatrix}{\mathrm{4}}&{-\mathrm{1}}\\{\mathrm{2}}&{\mathrm{1}}\end{bmatrix} \\ $$$$\:{For}\:{trace}\left(\boldsymbol{{S}}\right)\:=\:\pm\mathrm{1} \\ $$$$\:\pm\boldsymbol{{S}}\:=\:\boldsymbol{{S}}^{\mathrm{2}} \:−\:\mathrm{6}\boldsymbol{{I}}_{\mathrm{2}} \\ $$$$\:\:\:\boldsymbol{{S}}\:=\:\pm\:\begin{bmatrix}{\mathrm{8}}&{-\mathrm{5}}\\{\mathrm{10}}&{-\mathrm{7}}\end{bmatrix} \\ $$
Answered by Rasheed.Sindhi last updated on 26/Oct/24
$$ \\ $$$${let}\:\mathrm{S}=\pm\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}\:;\:{assuming}\:{a},{b},{c},{d}\in\mathbb{Z} \\ $$$$\mathrm{S}^{\mathrm{2}} =\left(\pm\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}^{\mathrm{2}} \right)=\begin{pmatrix}{{a}^{\mathrm{2}} +{bc}}&{{ab}+{bd}}\\{{ca}+{cd}}&{{bc}+{d}^{\mathrm{2}} }\end{pmatrix}=\:\begin{pmatrix}{\mathrm{14}\:\:\:\:\:\:−\mathrm{5}}\\{\mathrm{10}\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix}\: \\ $$$${a}^{\mathrm{2}} +{bc}=\mathrm{14}…{i}\:\:,\:{b}\left({a}+{d}\right)=−\mathrm{5}…{ii} \\ $$$${c}\left({a}+{d}\right)=\mathrm{10}…{iii}\:,\:{bc}+{d}^{\mathrm{2}} =−\mathrm{1}…{iv} \\ $$$${i}\:−\:{iv}:{a}^{\mathrm{2}} −{d}^{\mathrm{2}} =\mathrm{15} \\ $$$$\begin{cases}{\left({a}−{d}\right)\left({a}+{d}\right)=\mathrm{3}×\mathrm{5}\Rightarrow\begin{cases}{{a}−{d}=\mathrm{3}}\\{{a}+{d}=\mathrm{5}}\end{cases}\Rightarrow{a}=\mathrm{4},{d}=\mathrm{1}}\\{\left({a}−{d}\right)\left({a}+{d}\right)=\mathrm{5}×\mathrm{3}\Rightarrow\begin{cases}{{a}−{d}=\mathrm{5}}\\{{a}+{d}=\mathrm{3}}\end{cases}\Rightarrow{a}=\mathrm{4},{d}=−\mathrm{1}}\\{\left({a}−{d}\right)\left({a}+{d}\right)=\mathrm{1}×\mathrm{15}\Rightarrow\begin{cases}{{a}−{d}=\mathrm{1}}\\{{a}+{d}=\mathrm{15}}\end{cases}\Rightarrow{a}=\mathrm{8},{d}=\mathrm{7}}\\{\left({a}−{d}\right)\left({a}+{d}\right)=\mathrm{15}×\mathrm{1}\Rightarrow\begin{cases}{{a}−{d}=\mathrm{15}}\\{{a}+{d}=\mathrm{1}}\end{cases}\Rightarrow{a}=\mathrm{8},{d}=−\mathrm{7}}\end{cases} \\ $$$${ii}\Rightarrow\:{b}=\frac{−\mathrm{5}}{{a}+{d}}\:\:\:\:\:{iii}\Rightarrow{c}=\frac{\mathrm{10}}{{a}+{d}} \\ $$$$\: \\ $$$${a}=\mathrm{4},{d}=\mathrm{1}\Rightarrow{b}=−\mathrm{1},{c}=\mathrm{2} \\ $$$${a}=\mathrm{4},{d}=−\mathrm{1}\Rightarrow{b}=\frac{−\mathrm{5}}{\mathrm{3}}\notin\mathbb{Z}\:,\:{c}=\frac{\mathrm{10}}{\mathrm{3}}\notin\mathbb{Z}\:{Rejected}\: \\ $$$${a}=\mathrm{8},{d}=\mathrm{7}\Rightarrow{b}=−\frac{\mathrm{1}}{\mathrm{3}}\notin\mathbb{Z},{c}=\frac{\mathrm{10}}{\mathrm{15}}=\frac{\mathrm{2}}{\mathrm{3}}\notin\mathbb{Z}\:{Rejected} \\ $$$${a}=\mathrm{8},{d}=−\mathrm{7}\Rightarrow{b}=−\mathrm{5},{c}=\mathrm{10} \\ $$$$\: \\ $$$$\mathrm{S}=\pm\begin{pmatrix}{\mathrm{4}}&{−\mathrm{1}}\\{\mathrm{2}}&{\:\:\:\:\mathrm{1}}\end{pmatrix}\:\:,\pm\begin{pmatrix}{\mathrm{8}}&{−\mathrm{5}}\\{\mathrm{10}}&{−\mathrm{7}}\end{pmatrix}\: \\ $$
Answered by Rasheed.Sindhi last updated on 26/Oct/24
$${let}\:\mathrm{S}=\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix} \\ $$$$\mathrm{S}^{\mathrm{2}} =\begin{pmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{pmatrix}^{\mathrm{2}} =\begin{pmatrix}{{a}^{\mathrm{2}} +{bc}}&{{ab}+{bd}}\\{{ca}+{cd}}&{{bc}+{d}^{\mathrm{2}} }\end{pmatrix}=\:\begin{pmatrix}{\mathrm{14}\:\:\:\:\:\:−\mathrm{5}}\\{\mathrm{10}\:\:\:\:\:\:−\mathrm{1}}\end{pmatrix}\: \\ $$$${a}^{\mathrm{2}} +{bc}=\mathrm{14}\:\:,\:{b}\left({a}+{d}\right)=−\mathrm{5} \\ $$$${c}\left({a}+{d}\right)=\mathrm{10}\:,\:{bc}+{d}^{\mathrm{2}} =−\mathrm{1} \\ $$$${a}+{d}=−\frac{\mathrm{5}}{{b}}=\frac{\mathrm{10}}{{c}}\Rightarrow{c}=−\mathrm{2}{b} \\ $$$${bc}=\mathrm{14}−{a}^{\mathrm{2}} =−\mathrm{1}−{d}^{\mathrm{2}} \Rightarrow{a}^{\mathrm{2}} −{d}^{\mathrm{2}} =\mathrm{15} \\ $$$$\Rightarrow\left({a}−{d}\right)\left({a}+{d}\right)=\mathrm{3}×\mathrm{5} \\ $$$${let}\:\:{a}−{d}=\mathrm{3} \\ $$$$\:\:\:\:\:\:\:\:\:{a}+{d}=\mathrm{5}\Rightarrow{a}=\mathrm{5}−{d} \\ $$$$\mathrm{S}=\begin{pmatrix}{\mathrm{5}−{d}}&{{b}}\\{−\mathrm{2}{b}}&{{d}}\end{pmatrix} \\ $$$${b}=−\mathrm{1},\:{d}=\mathrm{1} \\ $$$${One}\:{of}\:{answers}: \\ $$$$\mathrm{S}=\begin{pmatrix}{\mathrm{4}}&{−\mathrm{1}}\\{\mathrm{2}}&{\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\mathcal{V}{erification}: \\ $$$$\mathrm{S}^{\mathrm{2}} =\begin{pmatrix}{\mathrm{4}}&{−\mathrm{1}}\\{\mathrm{2}}&{\:\:\:\:\:\mathrm{1}}\end{pmatrix}\begin{pmatrix}{\mathrm{4}}&{−\mathrm{1}}\\{\mathrm{2}}&{\:\:\:\:\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{16}−\mathrm{2}}&{−\mathrm{4}−\mathrm{1}}\\{\mathrm{8}+\mathrm{2}}&{−\mathrm{2}+\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{14}}&{−\mathrm{5}}\\{\mathrm{10}}&{−\mathrm{1}}\end{pmatrix} \\ $$
Commented by Rasheed.Sindhi last updated on 26/Oct/24
$$\mathcal{T}{han}\mathcal{X}\:{sir}! \\ $$$${Pl}\:{see}\:{my}\:{next}\:{answer},{where} \\ $$$${I}\:{covered}\:{all}\:{integral}\:{solutions}. \\ $$
Commented by Ghisom last updated on 26/Oct/24
$$\mathrm{there}\:\mathrm{are}\:\mathrm{4}\:\mathrm{solutions} \\ $$$$\pm\begin{pmatrix}{\mathrm{4}}&{−\mathrm{1}}\\{\mathrm{2}}&{\mathrm{1}}\end{pmatrix}\:\:\mathrm{and}\:\pm\begin{pmatrix}{\mathrm{8}}&{−\mathrm{5}}\\{\mathrm{10}}&{−\mathrm{7}}\end{pmatrix} \\ $$