Question Number 213022 by Spillover last updated on 28/Oct/24
Answered by TonyCWX08 last updated on 31/Oct/24
$${FC}\:=\:{a}+{b} \\ $$$${height}\:{of}\:{trapezium}_{{AFBC}} \: \\ $$$$=\:\sqrt{{b}^{\mathrm{2}} −\left(\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\:\sqrt{\frac{\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$=\:\frac{{b}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${Area}_{{AFBC}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{a}+{b}\right)\left(\frac{{b}\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{2}{ab}\sqrt{\mathrm{3}}+{b}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$$=\frac{{ab}\sqrt{\mathrm{3}}}{\mathrm{2}}+\left(\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} \sqrt{\mathrm{3}} \\ $$$$=\sqrt{\mathrm{3}}\left(\frac{{ab}}{\mathrm{2}}+\left(\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\right)\right) \\ $$$$ \\ $$$${Little}\:{equilateral}\:{triangle}\:{formed}\:{when}\:{joining}\:{point}\:{A}\:{to}\:{D}\:{and}\:{F}\:{to}\:{C} \\ $$$${Side}\:{length}\:=\:{b} \\ $$$${Area}\:=\:\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${Big}\:{equilateral}\:{triangle}\:{formed}\:{in}\:{the}\:{middle}\:{of}\:{the}\:{Hexagon}\:{when}\:{joining}\:{the}\:{same}\:{points} \\ $$$${Side}\:{length}\: \\ $$$$=\:{a}+{b}−\mathrm{2}{b} \\ $$$$=\:{a}−{b} \\ $$$${Area}\:=\:\frac{\left({a}−{b}\right)^{\mathrm{2}} }{\mathrm{4}}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${Area}\:{of}\:{Cyclic}\:{Hexagon} \\ $$$$=\:\mathrm{3}{Area}_{{AFBC}} \:−\:\mathrm{3}{Area}_{{Small}\Delta} \:+\:{Area}_{{Big}\Delta} \\ $$$$=\:\mathrm{3}\left(\sqrt{\mathrm{3}}\left(\frac{{ab}}{\mathrm{2}}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\right)\right)\:−\:\mathrm{3}\left(\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\sqrt{\mathrm{3}}\right)\:+\:\frac{{a}^{\mathrm{2}} −\mathrm{2}{ab}+{b}^{\mathrm{2}} }{\mathrm{4}}\sqrt{\mathrm{3}} \\ $$$$=\frac{\mathrm{3}{ab}\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{3}\sqrt{\mathrm{3}}{b}^{\mathrm{2}} }{\mathrm{4}}−\frac{\mathrm{3}{b}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{4}}+\frac{\sqrt{\mathrm{3}}\left({a}^{\mathrm{2}} −\mathrm{2}{ab}+{b}^{\mathrm{2}} \right)}{\mathrm{4}} \\ $$$$=\frac{\mathrm{6}{ab}\sqrt{\mathrm{3}}+\mathrm{3}{b}^{\mathrm{2}} \sqrt{\mathrm{3}}−\mathrm{3}{b}^{\mathrm{2}} \sqrt{\mathrm{3}}+{a}^{\mathrm{2}} \sqrt{\mathrm{3}}−\mathrm{2}{ab}\sqrt{\mathrm{3}}+{b}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$$=\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{3}}+\mathrm{4}{ab}\sqrt{\mathrm{3}}+{b}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$$=\sqrt{\mathrm{3}}\left[\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+{ab}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}}\right] \\ $$$$=\sqrt{\mathrm{3}}\left[\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} +{ab}\right] \\ $$$${Hence}\:{Proved}. \\ $$
Answered by TonyCWX08 last updated on 31/Oct/24
$${Area}_{{PQR}} =\frac{{X}^{\mathrm{2}} }{\mathrm{4}}\sqrt{\mathrm{3}} \\ $$$$\frac{{X}^{\mathrm{2}} }{\mathrm{4}}\sqrt{\mathrm{3}}\:=\:\sqrt{\mathrm{3}}\left[\left(\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{ab}\right] \\ $$$$\left(\frac{{X}}{\mathrm{2}}\right)^{\mathrm{2}} =\left[\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{ab}+\left(\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} \right] \\ $$$$\frac{{X}}{\mathrm{2}}\:=\:\sqrt{\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{ab}+\left(\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\frac{{X}}{\mathrm{2}}\:=\:\:\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{4}{ab}}{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\frac{{X}}{\mathrm{2}}\:=\:\sqrt{\frac{{a}^{\mathrm{2}} +\mathrm{4}{ab}+{b}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$$\frac{{X}}{\mathrm{2}}\:=\:\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{4}{ab}+{b}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${X}\:=\:\sqrt{{a}^{\mathrm{2}} +\mathrm{4}{ab}+{b}^{\mathrm{2}} } \\ $$
Answered by TonyCWX08 last updated on 31/Oct/24
Commented by Spillover last updated on 31/Oct/24
$${great}\:{work}\:{thank}\:{you} \\ $$
Commented by TonyCWX08 last updated on 01/Nov/24
$${Welcome}. \\ $$