Question Number 213097 by issac last updated on 30/Oct/24
$$\mathrm{Uhhhh}. \\ $$$$\mathrm{can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{solve}\:\mathrm{Partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\bigtriangledown^{\mathrm{2}} \boldsymbol{\phi}=\mathrm{0} \\ $$$$\mathrm{Cylinderical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\frac{\mathrm{1}}{\rho}\centerdot\frac{\partial\:\:}{\partial\rho}\left(\rho\frac{\partial\:\:}{\partial\rho}\right)+\left(\frac{\mathrm{1}}{\rho}\right)^{\mathrm{2}} \frac{\partial^{\mathrm{2}} \:}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \:\:}{\partial{z}^{\mathrm{2}} } \\ $$$$\mathrm{Spherical}\:\mathrm{Laplacian}\:\mathrm{case} \\ $$$$\bigtriangledown^{\mathrm{2}} =\left(\frac{\mathrm{1}}{{r}}\right)^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\:\:}{\partial{r}}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}\left(\theta\right)}\centerdot\frac{\partial\:\:}{\partial\theta}\left(\mathrm{sin}\left(\theta\right)\frac{\partial\:\:}{\partial\theta}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\centerdot\frac{\partial^{\mathrm{2}} \:}{\partial\varphi^{\mathrm{2}} } \\ $$
Answered by MrGaster last updated on 30/Oct/24
$$\bigtriangledown^{\mathrm{2}} \phi=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\rho}\:\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\phi}{\partial\phi}\right)+\frac{\mathrm{1}}{\rho^{\mathrm{2}} }\:\frac{\partial^{\mathrm{2}} \phi}{\partial\phi^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} \phi}{\partial{z}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\phi}{\partial{r}}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}\:\theta}\:\frac{\partial}{\partial\theta}\left(\mathrm{sin}\:\theta\frac{\partial\phi}{\partial\theta}\right)+\frac{\mathrm{1}}{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \theta}\:\frac{\partial^{\mathrm{2}} \phi}{\partial\varphi^{\mathrm{2}} }=\mathrm{0} \\ $$