Menu Close

Question-213201




Question Number 213201 by ajfour last updated on 01/Nov/24
Commented by ajfour last updated on 01/Nov/24
Find R
$${Find}\:{R} \\ $$
Answered by A5T last updated on 01/Nov/24
(√((R+1)^2 −(R−1)^2 ))=(√(2^2 −1^2 ))+(√((R+1)^2 −R^2 ))  ⇒R=5+2(√6)
$$\sqrt{\left({R}+\mathrm{1}\right)^{\mathrm{2}} −\left({R}−\mathrm{1}\right)^{\mathrm{2}} }=\sqrt{\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\sqrt{\left({R}+\mathrm{1}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} } \\ $$$$\Rightarrow{R}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}} \\ $$
Commented by A5T last updated on 01/Nov/24
Commented by ajfour last updated on 01/Nov/24
Wow, excellent.
$${Wow},\:{excellent}. \\ $$
Commented by ajfour last updated on 01/Nov/24
(2(√R)−(√3))^2 =1+2R  2R−4(√3)(√R)+2=0  R−2(√3)(√R)+1=0  (√R)=(√3)+(√2)  R=5+2(√6)
$$\left(\mathrm{2}\sqrt{{R}}−\sqrt{\mathrm{3}}\right)^{\mathrm{2}} =\mathrm{1}+\mathrm{2}{R} \\ $$$$\mathrm{2}{R}−\mathrm{4}\sqrt{\mathrm{3}}\sqrt{{R}}+\mathrm{2}=\mathrm{0} \\ $$$${R}−\mathrm{2}\sqrt{\mathrm{3}}\sqrt{{R}}+\mathrm{1}=\mathrm{0} \\ $$$$\sqrt{{R}}=\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}} \\ $$$${R}=\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}} \\ $$
Answered by cherokeesay last updated on 01/Nov/24

Leave a Reply

Your email address will not be published. Required fields are marked *