Question Number 213322 by Spillover last updated on 02/Nov/24
Commented by Spillover last updated on 03/Nov/24
Answered by Spillover last updated on 03/Nov/24
Answered by A5T last updated on 02/Nov/24
Commented by A5T last updated on 02/Nov/24
$${R}=\mathrm{3}+\mathrm{1}+\mathrm{2}=\mathrm{6} \\ $$
Commented by Spillover last updated on 02/Nov/24
$${yes}.{great} \\ $$
Answered by mr W last updated on 02/Nov/24
$$\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{{R}}\right)^{\mathrm{2}} =\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{{R}^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{1}}{{R}^{\mathrm{2}} }+\frac{\mathrm{11}}{\mathrm{3}{R}}−\frac{\mathrm{23}}{\mathrm{36}}=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{R}}=\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{\mathrm{11}}{\mathrm{3}}+\frac{\mathrm{12}}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\mathrm{6}}\:\Rightarrow{R}=\mathrm{6} \\ $$
Commented by mr W last updated on 03/Nov/24
$${yes} \\ $$
Commented by Spillover last updated on 03/Nov/24
$${great} \\ $$
Commented by efronzo1 last updated on 03/Nov/24
$$\mathrm{Descartes}\:\mathrm{Formula}? \\ $$
Answered by mehdee7396 last updated on 02/Nov/24
$${R}=\mathrm{3}+\mathrm{3}=\mathrm{6} \\ $$
Commented by Spillover last updated on 03/Nov/24
$${good} \\ $$
Commented by mehdee7396 last updated on 02/Nov/24
Commented by TonyCWX08 last updated on 03/Nov/24
$${By}\:{far}\:{the}\:{best}\:{solution}…. \\ $$