Menu Close

Find-A-1-2-3-323-




Question Number 213413 by hardmath last updated on 04/Nov/24
Find:  A= [(√1)] + [(√2)] + [(√3) ]+...+ [(√(323))] = ?
$$\mathrm{Find}: \\ $$$$\mathrm{A}=\:\left[\sqrt{\mathrm{1}}\right]\:+\:\left[\sqrt{\mathrm{2}}\right]\:+\:\left[\sqrt{\mathrm{3}}\:\right]+…+\:\left[\sqrt{\mathrm{323}}\right]\:=\:? \\ $$
Answered by mehdee7396 last updated on 04/Nov/24
=([(√1)]+[(√2)]+[(√3)]+)+([4]+[5]+...+[[(√8)])  +([(√9)]+[(√(10))]+...+[(√(24))])+...  +([(√(289))]+[(√(290))]+...+[(√(323))])  =3(1)+5(2)+7(3)+...+35(17)  =Σ_(n=1) ^(17) (2n+1)n=2Σ_(n=1) ^(17) n^2 +Σ_(n=1) ^(17) n  =2×((17×18×35)/6)+((17×18)/2)  =3723
$$=\left(\left[\sqrt{\mathrm{1}}\right]+\left[\sqrt{\mathrm{2}}\right]+\left[\sqrt{\mathrm{3}}\right]+\right)+\left(\left[\mathrm{4}\right]+\left[\mathrm{5}\right]+…+\left[\left[\sqrt{\mathrm{8}}\right]\right)\right. \\ $$$$+\left(\left[\sqrt{\mathrm{9}}\right]+\left[\sqrt{\mathrm{10}}\right]+…+\left[\sqrt{\mathrm{24}}\right]\right)+… \\ $$$$+\left(\left[\sqrt{\mathrm{289}}\right]+\left[\sqrt{\mathrm{290}}\right]+…+\left[\sqrt{\mathrm{323}}\right]\right) \\ $$$$=\mathrm{3}\left(\mathrm{1}\right)+\mathrm{5}\left(\mathrm{2}\right)+\mathrm{7}\left(\mathrm{3}\right)+…+\mathrm{35}\left(\mathrm{17}\right) \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\mathrm{17}} {\sum}}\left(\mathrm{2}{n}+\mathrm{1}\right){n}=\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\mathrm{17}} {\sum}}{n}^{\mathrm{2}} +\underset{{n}=\mathrm{1}} {\overset{\mathrm{17}} {\sum}}{n} \\ $$$$=\mathrm{2}×\frac{\mathrm{17}×\mathrm{18}×\mathrm{35}}{\mathrm{6}}+\frac{\mathrm{17}×\mathrm{18}}{\mathrm{2}} \\ $$$$=\mathrm{3723}\: \\ $$$$ \\ $$
Commented by hardmath last updated on 04/Nov/24
  dear friend, Is there an easier way to do this?  I didn't quite understand it
$$ \\ $$dear friend, Is there an easier way to do this? I didn't quite understand it

Leave a Reply

Your email address will not be published. Required fields are marked *