Menu Close

r-112452-2108-3820-80-67778-2108-2-80-232470-3820-2-80-




Question Number 213658 by Danielacrsz last updated on 13/Nov/24
r=((112452−(((2108)(3820))/(80)))/( (√(67778−(((2108)^2 )/(80))(√(232470−(((3820)^2 )/(80))))))))
$${r}=\frac{\mathrm{112452}−\frac{\left(\mathrm{2108}\right)\left(\mathrm{3820}\right)}{\mathrm{80}}}{\:\sqrt{\mathrm{67778}−\frac{\left(\mathrm{2108}\right)^{\mathrm{2}} }{\mathrm{80}}\sqrt{\mathrm{232470}−\frac{\left(\mathrm{3820}\right)^{\mathrm{2}} }{\mathrm{80}}}}} \\ $$$$ \\ $$$$ \\ $$
Answered by MathematicalUser2357 last updated on 14/Nov/24
 determinant (((r=−3.354874i)))
$$\begin{array}{|c|}{{r}=−\mathrm{3}.\mathrm{354874i}}\\\hline\end{array} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *