Menu Close

Find-lim-x-0-sinx-x-sinx-x-sinx-




Question Number 213821 by hardmath last updated on 17/Nov/24
Find:   lim_(x→0)  (((sinx)/x))^((sinx)/(x − sinx))   =  ?
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)^{\frac{\mathrm{sinx}}{\mathrm{x}\:−\:\mathrm{sinx}}} \:\:=\:\:? \\ $$
Answered by mehdee7396 last updated on 17/Nov/24
lim_(x→0) (((sinx)/x)−1)((sinx)/(x−sinx))  =lim_(x→0) (((sinx−x)/x))((sinx)/(x−sinx))=−1  ⇒answer=e^(−1)
$${lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{{sinx}}{{x}}−\mathrm{1}\right)\frac{{sinx}}{{x}−{sinx}} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \left(\frac{{sinx}−{x}}{{x}}\right)\frac{{sinx}}{{x}−{sinx}}=−\mathrm{1} \\ $$$$\Rightarrow{answer}={e}^{−\mathrm{1}} \: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *