Menu Close

find-all-solutions-of-the-equation-x-2-x-in-each-of-the-rings-Z-2-Z-3-and-Z-6-




Question Number 214001 by RoseAli last updated on 24/Nov/24
find all solutions of the equation x^2 =x in each of the rings   Z_2    Z_3   and Z_6
$$\mathrm{find}\:\mathrm{all}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:{x}^{\mathrm{2}} ={x}\:\mathrm{in}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rings}\: \\ $$$${Z}_{\mathrm{2}} \: \\ $$$${Z}_{\mathrm{3}} \\ $$$$\mathrm{and}\:\mathrm{Z}_{\mathrm{6}} \\ $$
Answered by TonyCWX08 last updated on 24/Nov/24
In Z_2 , Zero Divisor: 1×2=0  x^2 −x=0  x(x−1)=0  x=0 or x=1  But 2(2−1)=2×1=0  So x=2 is also an answer
$${In}\:\mathbb{Z}_{\mathrm{2}} ,\:{Zero}\:{Divisor}:\:\mathrm{1}×\mathrm{2}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}=\mathrm{0} \\ $$$${x}\left({x}−\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=\mathrm{0}\:{or}\:{x}=\mathrm{1} \\ $$$${But}\:\mathrm{2}\left(\mathrm{2}−\mathrm{1}\right)=\mathrm{2}×\mathrm{1}=\mathrm{0} \\ $$$${So}\:{x}=\mathrm{2}\:{is}\:{also}\:{an}\:{answer} \\ $$$$ \\ $$$$ \\ $$
Answered by mehdee7396 last updated on 24/Nov/24
Z_2 ⇒2∣x(x−1)⇒x∈Z  Z_3 ⇒3∣x(x−1)⇒x=3k or x=3k+1  Z_6 ⇒6∣x(x−1)⇒x=3k or  x=3k+1
$${Z}_{\mathrm{2}} \Rightarrow\mathrm{2}\mid{x}\left({x}−\mathrm{1}\right)\Rightarrow{x}\in{Z} \\ $$$${Z}_{\mathrm{3}} \Rightarrow\mathrm{3}\mid{x}\left({x}−\mathrm{1}\right)\Rightarrow{x}=\mathrm{3}{k}\:{or}\:{x}=\mathrm{3}{k}+\mathrm{1} \\ $$$${Z}_{\mathrm{6}} \Rightarrow\mathrm{6}\mid{x}\left({x}−\mathrm{1}\right)\Rightarrow{x}=\mathrm{3}{k}\:{or}\:\:{x}=\mathrm{3}{k}+\mathrm{1} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *