Question Number 214020 by ajfour last updated on 24/Nov/24
Commented by ajfour last updated on 24/Nov/24
$${Red}\:{area}\:=\:{Blue}\:{area}.\:{Find}\:{r}\:{in} \\ $$$${terms}\:{of}\:{k},\:\phi. \\ $$
Answered by dionigi last updated on 24/Nov/24
$$ \\ $$$${kp}^{\mathrm{2}} \:=\:\left(\mathrm{1}+\:\mathrm{cos}\:\varphi\right)\:{R} \\ $$$${p}^{\mathrm{2}} \:=\:\frac{\left(\mathrm{1}+\:\mathrm{cos}\:\varphi\right)\:{R}}{{k}} \\ $$$${A}_{\mathrm{1}} \:=\:\mathrm{2}\:\left({k}\:{p}^{\mathrm{3}} \:−\:\frac{{k}\:{p}^{\mathrm{3}} }{\mathrm{3}}\right)\:=\:\frac{\mathrm{4}\:{k}\:{p}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${A}_{\mathrm{2}} \:=\:\pi\:{R}^{\mathrm{2}} \:−\:\varphi\:{R}^{\mathrm{2}} \:+\:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\:{R}^{\mathrm{2}} \\ $$$${A}_{\mathrm{2}} \:=\:\left(\pi−\:\varphi\:+\:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\right)\:{R}^{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} \:=\:{A}_{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} ^{\mathrm{2}} \:=\:{A}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\frac{\mathrm{16}\:{k}^{\mathrm{2}} \:{p}^{\mathrm{6}} }{\mathrm{9}}\:=\:\left(\pi−\:\varphi\:+\:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\right)^{\mathrm{2}} \:{R}^{\mathrm{4}} \\ $$$$\frac{\mathrm{16}\:\left(\mathrm{1}+\:\mathrm{cos}\:\varphi\right)^{\mathrm{3}} \:{R}^{\mathrm{3}} }{\mathrm{9}\:{k}}\:=\:\left(\pi−\:\varphi\:+\:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\right)^{\mathrm{2}} \:{R}^{\mathrm{4}} \\ $$$${R}\:=\:\frac{\mathrm{16}\:\left(\mathrm{1}+\:\mathrm{cos}\:\varphi\right)^{\mathrm{3}} \:}{\mathrm{9}\:{k}\:\left(\pi−\:\varphi\:+\:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\right)^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 24/Nov/24
$${Thank}\:{you}. \\ $$
Answered by mr W last updated on 24/Nov/24
$${r}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)={kp}^{\mathrm{2}} \\ $$$$\Rightarrow{p}=\sqrt{\frac{{r}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)}{{k}}} \\ $$$$\frac{{r}^{\mathrm{2}} \left(\pi−\varphi\right)}{\mathrm{2}}+\frac{{r}^{\mathrm{2}} \:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi}{\mathrm{2}}=\frac{\mathrm{2}{pr}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)}{\mathrm{3}} \\ $$$$\frac{{r}^{\mathrm{2}} \left(\pi−\varphi\right)}{\mathrm{2}}+\frac{{r}^{\mathrm{2}} \:\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi}{\mathrm{2}}=\frac{\mathrm{2}{r}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)\sqrt{{r}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)}}{\mathrm{3}\sqrt{{k}}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{16}\left(\mathrm{1}+\mathrm{cos}\:\varphi\right)^{\mathrm{3}} }{\:\mathrm{9}{k}\left(\pi−\varphi+\mathrm{sin}\:\varphi\:\mathrm{cos}\:\varphi\right)^{\mathrm{2}} } \\ $$
Commented by mr W last updated on 24/Nov/24
Commented by mr W last updated on 24/Nov/24
Commented by ajfour last updated on 24/Nov/24
$${Thanks}\:{Sir} \\ $$$$\Rightarrow\:\:{for}\:\varphi=\frac{\pi}{\mathrm{2}}\:,\:{k}=\mathrm{1} \\ $$$${r}=\frac{\mathrm{16}}{\mathrm{9}\pi^{\mathrm{2}} }=\left(\frac{\mathrm{4}}{\mathrm{3}\pi}\right)^{\mathrm{2}} \:\:\:\left({I}\:{am}\:{reminded}\:{of}\:\right. \\ $$$$\left.{c}.{m}.\:{height}\:{of}\:{semi}-\:{disc}\right) \\ $$$$ \\ $$