Menu Close

D-e-z-1-2-z-2-2-z-n-2-da-D-0-0-0-n-times-0-pi-e-sin-2-z-dz-help-




Question Number 213999 by issac last updated on 24/Nov/24
∫∫...∫_( D)   e^(−(z_1 ^2 +z_2 ^2 ...+z_n ^2 )) da  D=[0,∞)×[0,∞)......[0,∞)_(n times)   ∫_0 ^( π)  e^(−sin^2 (z)) dz  help
$$\int\int…\int_{\:\mathcal{D}} \:\:{e}^{−\left({z}_{\mathrm{1}} ^{\mathrm{2}} +{z}_{\mathrm{2}} ^{\mathrm{2}} …+{z}_{{n}} ^{\mathrm{2}} \right)} \mathrm{da} \\ $$$$\mathcal{D}=\underset{\boldsymbol{\mathrm{n}}\:\boldsymbol{\mathrm{times}}} {\left[\mathrm{0},\infty\right)×\left[\mathrm{0},\infty\right)……\left[\mathrm{0},\infty\right)} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{−\mathrm{sin}^{\mathrm{2}} \left({z}\right)} \mathrm{d}{z} \\ $$$$\mathrm{help} \\ $$
Commented by mr W last updated on 24/Nov/24
it′s better if you post only one  question in each question.
$${it}'{s}\:{better}\:{if}\:{you}\:{post}\:{only}\:{one} \\ $$$${question}\:{in}\:{each}\:{question}. \\ $$
Answered by mr W last updated on 24/Nov/24
Q1  =∫_0 ^∞ e^(−r^2 ) ((2π^(n/2) )/(Γ((n/2))))r^(n−1) dr  =((2π^(n/2) )/(Γ((n/2))))∫_0 ^∞ e^(−r^2 ) r^(n−1) dr  =((2π^(n/2) )/(Γ((n/2))))×(1/2)Γ((n/2))  =π^(n/2)
$${Q}\mathrm{1} \\ $$$$=\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } \frac{\mathrm{2}\pi^{\frac{{n}}{\mathrm{2}}} }{\Gamma\left(\frac{{n}}{\mathrm{2}}\right)}{r}^{{n}−\mathrm{1}} {dr} \\ $$$$=\frac{\mathrm{2}\pi^{\frac{{n}}{\mathrm{2}}} }{\Gamma\left(\frac{{n}}{\mathrm{2}}\right)}\int_{\mathrm{0}} ^{\infty} {e}^{−{r}^{\mathrm{2}} } {r}^{{n}−\mathrm{1}} {dr} \\ $$$$=\frac{\mathrm{2}\pi^{\frac{{n}}{\mathrm{2}}} }{\Gamma\left(\frac{{n}}{\mathrm{2}}\right)}×\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{{n}}{\mathrm{2}}\right) \\ $$$$=\pi^{\frac{{n}}{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *