Question Number 214012 by ajfour last updated on 24/Nov/24
Commented by ajfour last updated on 24/Nov/24
$${Outer}\:{circle}\:{radius}\:{is}\:{R}.\:{Circle}\:{with} \\ $$$${center}\:{A}\:{has}\:{radius}\:{r}={R}/\mathrm{2}. \\ $$$${If}\:\bigtriangleup{ABC}\:{is}\:{equilateral},\:{find}\:{its} \\ $$$${edge}\:{length}\:\left({say}\:{a}\right). \\ $$
Answered by mr W last updated on 24/Nov/24
Commented by mr W last updated on 24/Nov/24
$${c}={s}−\frac{{R}}{\mathrm{2}} \\ $$$${C}\left({s}\:\mathrm{sin}\:\alpha,\:−\frac{{R}}{\mathrm{2}}+{s}\:\mathrm{cos}\:\alpha\right) \\ $$$${B}\left({s}\:\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right),\:−\frac{{R}}{\mathrm{2}}+{s}\:\mathrm{cos}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)\right) \\ $$$${s}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\alpha+\left(−\frac{{R}}{\mathrm{2}}+{s}\:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} =\left({R}−{s}+\frac{{R}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)+\:\left[−\frac{{R}}{\mathrm{2}}+{s}\:\mathrm{cos}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)\right]^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${let}\:\lambda=\frac{{s}}{{R}} \\ $$$$\lambda^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\alpha+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\lambda\:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} =\left(\frac{\mathrm{3}}{\mathrm{2}}−\lambda\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}−\lambda\:\mathrm{cos}\:\alpha=\frac{\mathrm{9}}{\mathrm{4}}−\mathrm{3}\lambda \\ $$$$\Rightarrow\lambda\:\mathrm{cos}\:\alpha=\mathrm{3}\lambda−\mathrm{2}\:\Rightarrow\lambda\:\mathrm{sin}\:\alpha=\mathrm{2}\sqrt{\left(\mathrm{1}−\lambda\right)\left(\mathrm{2}\lambda−\mathrm{1}\right)} \\ $$$$\lambda^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)+\:\left[−\frac{\mathrm{1}}{\mathrm{2}}+\lambda\:\mathrm{cos}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)\right]^{\mathrm{2}} =\mathrm{1} \\ $$$$\lambda^{\mathrm{2}} −\lambda\:\mathrm{cos}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\lambda^{\mathrm{2}} −\frac{\lambda}{\mathrm{2}}\left(\mathrm{cos}\:\alpha−\sqrt{\mathrm{3}}\:\mathrm{sin}\:\alpha\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{2}\lambda^{\mathrm{2}} −\mathrm{3}\lambda+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}\sqrt{\mathrm{3}\left(\mathrm{1}−\lambda\right)\left(\mathrm{2}\lambda−\mathrm{1}\right)}=\mathrm{0} \\ $$$$\Rightarrow\lambda\approx\mathrm{0}.\mathrm{52391863},\:\mathrm{0}.\mathrm{97608137} \\ $$
Commented by mr W last updated on 24/Nov/24
Commented by mr W last updated on 24/Nov/24
Commented by ajfour last updated on 24/Nov/24
$${Yes}\:{Sir}\:.\:{I}\:{took}\:\bigtriangleup\:{side}\:=\mathrm{2}{s} \\ $$$$\left(\mathrm{8}{s}^{\mathrm{2}} −\mathrm{6}{s}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{12}\left(\mathrm{8}{s}^{\mathrm{2}} −\mathrm{6}{s}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{8}{s}^{\mathrm{2}} +\mathrm{6}{s}+\frac{\mathrm{1}}{\mathrm{2}}=−\mathrm{6}−\sqrt{\mathrm{30}} \\ $$$$\:\:\mathrm{2}{s}=\frac{\mathrm{3}\pm\sqrt{\mathrm{8}\sqrt{\mathrm{30}}−\mathrm{43}}}{\mathrm{4}} \\ $$$$\:\:\approx\:\:\mathrm{0}.\mathrm{97608}\:\:,\:\:\mathrm{0}.\mathrm{52392} \\ $$
Commented by ajfour last updated on 24/Nov/24
$${Let}\:\bigtriangleup\:{side}\:{be}\:\mathrm{2}{s}. \\ $$$$\mathrm{2}{s}={r}+{c} \\ $$$${And}\:{mid}\:{point}\:{of}\:{AC}\:{be} \\ $$$${M}\left({s}\mathrm{sin}\:\alpha,\:−{r}+{s}\mathrm{cos}\:\alpha\right) \\ $$$${BM}={s}\sqrt{\mathrm{3}} \\ $$$${B}\left({s}\mathrm{sin}\:\alpha+{s}\sqrt{\mathrm{3}}\mathrm{cos}\:\alpha,\:−{r}+{s}\mathrm{cos}\:\alpha−{s}\sqrt{\mathrm{3}}\mathrm{sin}\:\alpha\right) \\ $$$${OB}^{\:\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha+\mathrm{3}{s}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha+\cancel{\mathrm{2}\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \mathrm{sin}\:\alpha\mathrm{cos}\:\alpha} \\ $$$$\:\:+{r}^{\mathrm{2}} +{s}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha+\mathrm{3}{s}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha−\cancel{\mathrm{2}\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \mathrm{sin}\:\alpha\mathrm{cos}\:\alpha} \\ $$$$−\mathrm{2}{rs}\mathrm{cos}\:\alpha+\mathrm{2}\sqrt{\mathrm{3}}{rs}\mathrm{sin}\:\alpha={R}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\mathrm{4}{s}^{\mathrm{2}} −\mathrm{2}{rs}\mathrm{cos}\:\alpha+\mathrm{2}\sqrt{\mathrm{3}}{rs}\mathrm{sin}\:\alpha={R}^{\mathrm{2}} \\ $$$${say}\:\:\frac{{s}}{{R}}={t},\:\:{and}\:\:\frac{{r}}{{R}}=\frac{\mathrm{1}}{\mathrm{2}}\:\:\left({given}\right) \\ $$$$\mathrm{4}{t}^{\mathrm{2}} −{t}\mathrm{cos}\:\alpha+\sqrt{\mathrm{3}}{t}\mathrm{sin}\:\alpha=\mathrm{1}\:\:…….\left({i}\right) \\ $$$${Now} \\ $$$${C}\left(\mathrm{2}{s}\mathrm{sin}\:\alpha,\:−{r}+\mathrm{2}{s}\mathrm{cos}\:\alpha\right) \\ $$$${OC}^{\:\mathrm{2}} =\left({R}−{c}\right)^{\mathrm{2}} =\left({R}+{r}−\mathrm{2}{s}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{s}^{\mathrm{2}} −\mathrm{4}{rs}\mathrm{cos}\:\alpha=\left({R}+\mathrm{2}{r}−\mathrm{2}{s}\right)\left({R}−\mathrm{2}{s}\right) \\ $$$$\mathrm{2}{t}^{\mathrm{2}} −{t}\mathrm{cos}\:\alpha=\left(\mathrm{1}−{t}\right)\left(\mathrm{1}−\mathrm{2}{t}\right)\:\:\:\:…..\left({ii}\right) \\ $$$$\Rightarrow\:\:{t}\mathrm{cos}\:\alpha=\mathrm{3}{t}−\mathrm{1}\:\:\: \\ $$$${from}\:\:..\left({i}\right) \\ $$$$\sqrt{\mathrm{3}}{t}\mathrm{sin}\:\alpha=\mathrm{1}−\mathrm{4}{t}^{\mathrm{2}} +\mathrm{3}{t}−\mathrm{1} \\ $$$$\Rightarrow\:\:\mathrm{3}\left(\mathrm{3}{t}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{3}{t}−\mathrm{4}{t}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{3}{t}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\mathrm{3}{t}−\mathrm{4}{t}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{24}{t}^{\mathrm{2}} −\mathrm{18}{t}+\mathrm{3}=\mathrm{0} \\ $$$$\left(\mathrm{3}{t}−\mathrm{4}{t}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{6}\left(\mathrm{3}{t}−\mathrm{4}{t}^{\mathrm{2}} \right)+\mathrm{3}=\mathrm{0} \\ $$$$…{something}\:{went}\:{wrong}\:{this}\:{time}.. \\ $$