Question Number 214051 by issac last updated on 25/Nov/24
$$\mathrm{evaluate}\:\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}…\: \\ $$$$\mathrm{i}\:\mathrm{use}\:\mathrm{Feynman}'\mathrm{s}\:\mathrm{trick}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}={I} \\ $$$${I}\left({t}\right)=\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$${I}^{\left(\mathrm{1}\right)} \left({t}\right)=\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{sin}^{\mathrm{2}} \left({u}\right){e}^{{t}\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \left({u}\right)\right){e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}−\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{cos}^{\mathrm{2}} \left({u}\right){e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}−\int_{\mathrm{0}} ^{\:\pi} \:\mathrm{sin}^{\mathrm{2}} \left({u}+\frac{\pi}{\mathrm{2}}\right){e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$${u}+\frac{\pi}{\mathrm{2}}\:={w}\:\:\rightarrow\:\:\mathrm{d}{u}=\mathrm{d}{w} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{{t}\centerdot\mathrm{cos}^{\mathrm{2}} \left({w}\right)} \:\mathrm{d}{w}= \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\:\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{{t}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \left({w}\right)\right)} \mathrm{d}{w} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{{t}} {e}^{−{t}\mathrm{sin}^{\mathrm{2}} \left({w}\right)} \mathrm{d}{w}={e}^{{t}} \int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2}} \left({w}\right){e}^{−{t}\mathrm{sin}^{\mathrm{2}} \left({w}\right)} \mathrm{d}{w} \\ $$$${I}^{\left(\mathrm{1}\right)} \left({t}\right)=\int_{\mathrm{0}} ^{\:\pi} \:{e}^{{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u}−{e}^{{t}} \int_{\mathrm{0}} ^{\:\pi} \:\mathrm{sin}^{\mathrm{2}} \left({u}\right){e}^{−{t}\centerdot\mathrm{sin}^{\mathrm{2}} \left({u}\right)} \mathrm{d}{u} \\ $$$$\mathrm{I}\:\mathrm{can}'\mathrm{t}\:…\mathrm{anymore}…\mathrm{help} \\ $$