Question Number 214100 by ajfour last updated on 28/Nov/24
Answered by mr W last updated on 28/Nov/24
Commented by mr W last updated on 28/Nov/24
$${for}\:{maximum}\:{small}\:{circle}: \\ $$$${AF}\bot{FD} \\ $$$${FE}=\sqrt{\left({a}+{r}\right)^{\mathrm{2}} −\left({a}−{r}\right)^{\mathrm{2}} }=\mathrm{2}\sqrt{{ar}} \\ $$$$\left({a}+{b}\right){CD}^{\mathrm{2}} +{b}\left({a}+{r}\right)^{\mathrm{2}} =\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right] \\ $$$${CD}^{\mathrm{2}} =\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}} \\ $$$${ED}=\sqrt{\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}}−{r}^{\mathrm{2}} } \\ $$$${FD}=\mathrm{2}\sqrt{{ar}}+\sqrt{\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}}−{r}^{\mathrm{2}} } \\ $$$${FD}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left\{\mathrm{2}\sqrt{{ar}}+\sqrt{\frac{\left({a}+\mathrm{2}{b}\right)\left[\left({b}+{r}\right)^{\mathrm{2}} +\left({a}+{b}\right){b}\right]−{b}\left({a}+{r}\right)^{\mathrm{2}} }{{a}+{b}}−{r}^{\mathrm{2}} }\right\}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({a}+\mathrm{2}{b}\right)^{\mathrm{2}} \\ $$