Menu Close

Question-214228




Question Number 214228 by mr W last updated on 02/Dec/24
Commented by mr W last updated on 02/Dec/24
find area of the square
$${find}\:{area}\:{of}\:{the}\:{square} \\ $$
Answered by aleks041103 last updated on 02/Dec/24
let the point have a name G  and let it be at (y,z)  let B be at (0,0)  let C be at (x,0)  let A be at (0,x)  then:  y^2 +(x−z)^2 =7^2   y^2 +z^2 =4^2   (x−y)^2 +z^2 =9^2     x^2 +y^2 +z^2 −2xz=49  x^2 +y^2 +z^2 −2xy=81  y^2 +z^2 =16    x^2 −33=2xz  x^2 −65=2xy  y^2 +z^2 =16    ⇒x(z−y)=16 , 4x^2 yz=(x^2 −33)(x^2 −65)  ⇒x^2 (z−y)^2 =16^2 =  =x^2 (y^2 +z^2 )−2x^2 yz=  =16x^2 −(1/2)(x^2 −33)(x^2 −65)  ⇒S=x^2  and  2.16^2 =2.16S−(S−33)(S−65)  (S−33)(S−65)−32S+512=0  S^2 −130S+33.65+512=0  S^2 −130S+2657=0  ⇒S=65±(√(65^2 −2657))=65±(√(1568))    remains to be checked whether these  are valid solutions.  (also i may have made a mistake somewhere ;) )
$${let}\:{the}\:{point}\:{have}\:{a}\:{name}\:{G} \\ $$$${and}\:{let}\:{it}\:{be}\:{at}\:\left({y},{z}\right) \\ $$$${let}\:{B}\:{be}\:{at}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$${let}\:{C}\:{be}\:{at}\:\left({x},\mathrm{0}\right) \\ $$$${let}\:{A}\:{be}\:{at}\:\left(\mathrm{0},{x}\right) \\ $$$${then}: \\ $$$${y}^{\mathrm{2}} +\left({x}−{z}\right)^{\mathrm{2}} =\mathrm{7}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{9}^{\mathrm{2}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\mathrm{2}{xz}=\mathrm{49} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\mathrm{2}{xy}=\mathrm{81} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{33}=\mathrm{2}{xz} \\ $$$${x}^{\mathrm{2}} −\mathrm{65}=\mathrm{2}{xy} \\ $$$${y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{16} \\ $$$$ \\ $$$$\Rightarrow{x}\left({z}−{y}\right)=\mathrm{16}\:,\:\mathrm{4}{x}^{\mathrm{2}} {yz}=\left({x}^{\mathrm{2}} −\mathrm{33}\right)\left({x}^{\mathrm{2}} −\mathrm{65}\right) \\ $$$$\Rightarrow{x}^{\mathrm{2}} \left({z}−{y}\right)^{\mathrm{2}} =\mathrm{16}^{\mathrm{2}} = \\ $$$$={x}^{\mathrm{2}} \left({y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)−\mathrm{2}{x}^{\mathrm{2}} {yz}= \\ $$$$=\mathrm{16}{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} −\mathrm{33}\right)\left({x}^{\mathrm{2}} −\mathrm{65}\right) \\ $$$$\Rightarrow{S}={x}^{\mathrm{2}} \:{and} \\ $$$$\mathrm{2}.\mathrm{16}^{\mathrm{2}} =\mathrm{2}.\mathrm{16}{S}−\left({S}−\mathrm{33}\right)\left({S}−\mathrm{65}\right) \\ $$$$\left({S}−\mathrm{33}\right)\left({S}−\mathrm{65}\right)−\mathrm{32}{S}+\mathrm{512}=\mathrm{0} \\ $$$${S}^{\mathrm{2}} −\mathrm{130}{S}+\mathrm{33}.\mathrm{65}+\mathrm{512}=\mathrm{0} \\ $$$${S}^{\mathrm{2}} −\mathrm{130}{S}+\mathrm{2657}=\mathrm{0} \\ $$$$\Rightarrow{S}=\mathrm{65}\pm\sqrt{\mathrm{65}^{\mathrm{2}} −\mathrm{2657}}=\mathrm{65}\pm\sqrt{\mathrm{1568}} \\ $$$$ \\ $$$${remains}\:{to}\:{be}\:{checked}\:{whether}\:{these} \\ $$$${are}\:{valid}\:{solutions}. \\ $$$$\left.\left({also}\:{i}\:{may}\:{have}\:{made}\:{a}\:{mistake}\:{somewhere}\:;\right)\:\right) \\ $$
Commented by mr W last updated on 02/Dec/24
S=65+(√(1568))=65+28(√2)  ⇒correct!
$${S}=\mathrm{65}+\sqrt{\mathrm{1568}}=\mathrm{65}+\mathrm{28}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow{correct}! \\ $$
Answered by mr W last updated on 02/Dec/24
Commented by mr W last updated on 02/Dec/24
ΔBEA≡ΔBFG  cos β=(((4(√2))^2 +7^2 −9^2 )/(2×4(√2)×7))=0 ⇒β=90°  AB^2 =4^2 +7^2 −2×4×7 cos 135°           =65+28(√2)=area of square
$$\Delta{BEA}\equiv\Delta{BFG} \\ $$$$\mathrm{cos}\:\beta=\frac{\left(\mathrm{4}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{9}^{\mathrm{2}} }{\mathrm{2}×\mathrm{4}\sqrt{\mathrm{2}}×\mathrm{7}}=\mathrm{0}\:\Rightarrow\beta=\mathrm{90}° \\ $$$${AB}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{2}×\mathrm{4}×\mathrm{7}\:\mathrm{cos}\:\mathrm{135}° \\ $$$$\:\:\:\:\:\:\:\:\:=\mathrm{65}+\mathrm{28}\sqrt{\mathrm{2}}={area}\:{of}\:{square} \\ $$
Answered by TonyCWX08 last updated on 02/Dec/24
Answered by TonyCWX08 last updated on 02/Dec/24
BF=2(√2)  BF^2 +FC^2 =BC^2   (2(√2))^2 +(2(√2)+7)^2 =BC^2   BC^2 =8+8+28(√2)+49=65+28(√2)=Area
$${BF}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${BF}^{\mathrm{2}} +{FC}^{\mathrm{2}} ={BC}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{7}\right)^{\mathrm{2}} ={BC}^{\mathrm{2}} \\ $$$${BC}^{\mathrm{2}} =\mathrm{8}+\mathrm{8}+\mathrm{28}\sqrt{\mathrm{2}}+\mathrm{49}=\mathrm{65}+\mathrm{28}\sqrt{\mathrm{2}}={Area} \\ $$
Commented by TonyCWX08 last updated on 02/Dec/24
PE=(√(4^2 +4^2 ))=4(√2)  PE^2 +EC^2   =(4(√2))^2 +(7)^2   =81  =PC^2   Triangle_(PEC)  is a right angle triangle.  EC is collinear with FC.
$${PE}=\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} }=\mathrm{4}\sqrt{\mathrm{2}} \\ $$$${PE}^{\mathrm{2}} +{EC}^{\mathrm{2}} \\ $$$$=\left(\mathrm{4}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{7}\right)^{\mathrm{2}} \\ $$$$=\mathrm{81} \\ $$$$={PC}^{\mathrm{2}} \\ $$$${Triangle}_{{PEC}} \:{is}\:{a}\:{right}\:{angle}\:{triangle}. \\ $$$${EC}\:{is}\:{collinear}\:{with}\:{FC}. \\ $$
Commented by mr W last updated on 02/Dec/24
you must prove at first that FE and  EC are collinear! otherwise you  can not take FC=FE+EC=2(√2)+7.
$${you}\:{must}\:{prove}\:{at}\:{first}\:{that}\:{FE}\:{and} \\ $$$${EC}\:{are}\:{collinear}!\:{otherwise}\:{you} \\ $$$${can}\:{not}\:{take}\:{FC}={FE}+{EC}=\mathrm{2}\sqrt{\mathrm{2}}+\mathrm{7}. \\ $$
Commented by TonyCWX08 last updated on 02/Dec/24
My diagram is a bit misleading.
$${My}\:{diagram}\:{is}\:{a}\:{bit}\:{misleading}. \\ $$
Commented by mr W last updated on 02/Dec/24
yes! good approach!
$${yes}!\:{good}\:{approach}! \\ $$
Commented by TonyCWX08 last updated on 02/Dec/24
Fixed.
$${Fixed}. \\ $$
Answered by ajfour last updated on 03/Dec/24
p^2 +q^2 =16  s=q+(√(49−p^2 ))=p+(√(81−q^2 ))  ⇒ s^2 −2qs=33  &   s^2 −2ps=65  ⇒  (s^2 −33)^2 +(s^2 −65)^2 =64s^2   2s^2 −260s^2 +1089+4225=0  s=65±(√(4225−((1089)/2)−((4225)/2)))    s=65±(√(1568))    s=65±28(√2)
$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{16} \\ $$$${s}={q}+\sqrt{\mathrm{49}−{p}^{\mathrm{2}} }={p}+\sqrt{\mathrm{81}−{q}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{s}^{\mathrm{2}} −\mathrm{2}{qs}=\mathrm{33} \\ $$$$\&\:\:\:{s}^{\mathrm{2}} −\mathrm{2}{ps}=\mathrm{65} \\ $$$$\Rightarrow\:\:\left({s}^{\mathrm{2}} −\mathrm{33}\right)^{\mathrm{2}} +\left({s}^{\mathrm{2}} −\mathrm{65}\right)^{\mathrm{2}} =\mathrm{64}{s}^{\mathrm{2}} \\ $$$$\mathrm{2}{s}^{\mathrm{2}} −\mathrm{260}{s}^{\mathrm{2}} +\mathrm{1089}+\mathrm{4225}=\mathrm{0} \\ $$$${s}=\mathrm{65}\pm\sqrt{\mathrm{4225}−\frac{\mathrm{1089}}{\mathrm{2}}−\frac{\mathrm{4225}}{\mathrm{2}}} \\ $$$$\:\:{s}=\mathrm{65}\pm\sqrt{\mathrm{1568}} \\ $$$$\:\:{s}=\mathrm{65}\pm\mathrm{28}\sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *