Menu Close

Question-214483




Question Number 214483 by MATHEMATICSAM last updated on 09/Dec/24
Answered by ajfour last updated on 09/Dec/24
let C≡(h, 2−r)  (x−h)^2 +(mx^2 −2+r)^2 =r^2   ((h−x)/(mx^2 −2+r))=2mx  (mx^2 −2+r)^2 (4m^2 x^2 +1)=r^2   z^2 {4m(z+2−r)+1}=r^2   z^3 +(2−r+(1/(4m)))z^2 =(r^2 /(4m))  (1/z^3 )−((4m)/r^2 )(2+(1/(4m))−r)(1/z)−((4m)/r^2 )=0  D=0  ⇒  f(m)=(4m)(2+(1/(4m))−r)^3 =((27r^2 )/4)  f(1)=f((1/4))  ⇒  4(2+(1/4)−r)^3 =(2+1−r)^3   ⇒  2^(2/3) ((9/4)−r)=3−r  (9/2^(4/3) )−3=r(2^(2/3) −1)  r=((9−6×2^(1/3) )/(4−2×2^(1/3) )) ≈ 0.9732  cant be true..
$${let}\:{C}\equiv\left({h},\:\mathrm{2}−{r}\right) \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} +\left({mx}^{\mathrm{2}} −\mathrm{2}+{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\frac{{h}−{x}}{{mx}^{\mathrm{2}} −\mathrm{2}+{r}}=\mathrm{2}{mx} \\ $$$$\left({mx}^{\mathrm{2}} −\mathrm{2}+{r}\right)^{\mathrm{2}} \left(\mathrm{4}{m}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{1}\right)={r}^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} \left\{\mathrm{4}{m}\left({z}+\mathrm{2}−{r}\right)+\mathrm{1}\right\}={r}^{\mathrm{2}} \\ $$$${z}^{\mathrm{3}} +\left(\mathrm{2}−{r}+\frac{\mathrm{1}}{\mathrm{4}{m}}\right){z}^{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{4}{m}} \\ $$$$\frac{\mathrm{1}}{{z}^{\mathrm{3}} }−\frac{\mathrm{4}{m}}{{r}^{\mathrm{2}} }\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}{m}}−{r}\right)\frac{\mathrm{1}}{{z}}−\frac{\mathrm{4}{m}}{{r}^{\mathrm{2}} }=\mathrm{0} \\ $$$${D}=\mathrm{0}\:\:\Rightarrow \\ $$$${f}\left({m}\right)=\left(\mathrm{4}{m}\right)\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}{m}}−{r}\right)^{\mathrm{3}} =\frac{\mathrm{27}{r}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${f}\left(\mathrm{1}\right)={f}\left(\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:\:\mathrm{4}\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{4}}−{r}\right)^{\mathrm{3}} =\left(\mathrm{2}+\mathrm{1}−{r}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\:\:\mathrm{2}^{\mathrm{2}/\mathrm{3}} \left(\frac{\mathrm{9}}{\mathrm{4}}−{r}\right)=\mathrm{3}−{r} \\ $$$$\frac{\mathrm{9}}{\mathrm{2}^{\mathrm{4}/\mathrm{3}} }−\mathrm{3}={r}\left(\mathrm{2}^{\mathrm{2}/\mathrm{3}} −\mathrm{1}\right) \\ $$$${r}=\frac{\mathrm{9}−\mathrm{6}×\mathrm{2}^{\mathrm{1}/\mathrm{3}} }{\mathrm{4}−\mathrm{2}×\mathrm{2}^{\mathrm{1}/\mathrm{3}} }\:\approx\:\mathrm{0}.\mathrm{9732} \\ $$$${cant}\:{be}\:{true}.. \\ $$
Answered by mr W last updated on 10/Dec/24
circle center at (h, 2−r)  touching y=x^2  at (p, q)  q=p^2   (dy/dx)=2p=tan α  h=p+r sin α=p+((2pr)/( (√(1+4p^2 ))))  2−r=p^2 −r cos α=p^2 −(r/( (√(1+4p^2 ))))  2−p^2 =r(1−(1/( (√(1+4p^2 )))))   { ((r=((2−p^2 )/(1−(1/( (√(1+4p^2 )))))))),((h=p+((2p(2−p^2 ))/( (√(1+4p^2 ))−1)))) :}      ...(I)  touching y=(x^2 /4) at (u, v)  v=(u^2 /4)  (dy/dx)=(u/2)=tan β  h=u−r sin β=u−((ur)/(2(√(1+(u^2 /4)))))  2−r=(u^2 /4)+r cos β=(u^2 /4)+(r/( (√(1+(u^2 /4)))))   { ((r=((2−(u^2 /4))/(1+(1/( (√(1+(u^2 /4))))))))),((h=u−((u(2−(u^2 /4)))/(2((√(1+(u^2 /4)))+1))))) :}   ...(II)  intersection of both parameterised  curves is at  h≈1.76833  r≈0.50832 ✓
$${circle}\:{center}\:{at}\:\left({h},\:\mathrm{2}−{r}\right) \\ $$$${touching}\:{y}={x}^{\mathrm{2}} \:{at}\:\left({p},\:{q}\right) \\ $$$${q}={p}^{\mathrm{2}} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2}{p}=\mathrm{tan}\:\alpha \\ $$$${h}={p}+{r}\:\mathrm{sin}\:\alpha={p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\mathrm{2}−{r}={p}^{\mathrm{2}} −{r}\:\mathrm{cos}\:\alpha={p}^{\mathrm{2}} −\frac{{r}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\mathrm{2}−{p}^{\mathrm{2}} ={r}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}\right) \\ $$$$\begin{cases}{{r}=\frac{\mathrm{2}−{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}}\\{{h}={p}+\frac{\mathrm{2}{p}\left(\mathrm{2}−{p}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }−\mathrm{1}}}\end{cases}\:\:\:\:\:\:…\left({I}\right) \\ $$$${touching}\:{y}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:{at}\:\left({u},\:{v}\right) \\ $$$${v}=\frac{{u}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{u}}{\mathrm{2}}=\mathrm{tan}\:\beta \\ $$$${h}={u}−{r}\:\mathrm{sin}\:\beta={u}−\frac{{ur}}{\mathrm{2}\sqrt{\mathrm{1}+\frac{{u}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$$\mathrm{2}−{r}=\frac{{u}^{\mathrm{2}} }{\mathrm{4}}+{r}\:\mathrm{cos}\:\beta=\frac{{u}^{\mathrm{2}} }{\mathrm{4}}+\frac{{r}}{\:\sqrt{\mathrm{1}+\frac{{u}^{\mathrm{2}} }{\mathrm{4}}}} \\ $$$$\begin{cases}{{r}=\frac{\mathrm{2}−\frac{{u}^{\mathrm{2}} }{\mathrm{4}}}{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{{u}^{\mathrm{2}} }{\mathrm{4}}}}}}\\{{h}={u}−\frac{{u}\left(\mathrm{2}−\frac{{u}^{\mathrm{2}} }{\mathrm{4}}\right)}{\mathrm{2}\left(\sqrt{\mathrm{1}+\frac{{u}^{\mathrm{2}} }{\mathrm{4}}}+\mathrm{1}\right)}}\end{cases}\:\:\:…\left({II}\right) \\ $$$${intersection}\:{of}\:{both}\:{parameterised} \\ $$$${curves}\:{is}\:{at} \\ $$$${h}\approx\mathrm{1}.\mathrm{76833} \\ $$$${r}\approx\mathrm{0}.\mathrm{50832}\:\checkmark \\ $$
Commented by TonyCWX08 last updated on 10/Dec/24
May I know why there is an angle there?  I don′t see the α and β...
$${May}\:{I}\:{know}\:{why}\:{there}\:{is}\:{an}\:{angle}\:{there}? \\ $$$${I}\:{don}'{t}\:{see}\:{the}\:\alpha\:{and}\:\beta… \\ $$
Commented by mr W last updated on 10/Dec/24
Commented by mr W last updated on 10/Dec/24
Commented by TonyCWX08 last updated on 11/Dec/24
Where can I actually learn all these stuffs??
$${Where}\:{can}\:{I}\:{actually}\:{learn}\:{all}\:{these}\:{stuffs}?? \\ $$
Commented by ajfour last updated on 11/Dec/24
You cant find heaven anywhere other than where you are.��
Commented by mr W last updated on 11/Dec/24
To learn things is one thing, to  apply the things learnt is an other  thing!  Perhaps you have already learnt  all the stuff concerned in this   question, you only need to apply  it.
$${To}\:{learn}\:{things}\:{is}\:{one}\:{thing},\:{to} \\ $$$${apply}\:{the}\:{things}\:{learnt}\:{is}\:{an}\:{other} \\ $$$${thing}! \\ $$$${Perhaps}\:{you}\:{have}\:{already}\:{learnt} \\ $$$${all}\:{the}\:{stuff}\:{concerned}\:{in}\:{this}\: \\ $$$${question},\:{you}\:{only}\:{need}\:{to}\:{apply} \\ $$$${it}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *