Menu Close

solve-partial-differantial-equation-x-f-x-y-x-y-f-x-y-y-f-x-y-ln-x-2-y-2-2-f-x-y-x-2-2-f-x-y-y-2-0-




Question Number 214678 by issac last updated on 16/Dec/24
solve  partial differantial equation  x((∂f(x,y))/∂x)+y((∂f(x,y))/∂y)=f(x,y)ln(x^2 +y^2 )  ((∂^2 f(x,y))/∂x^2 )+((∂^2 f(x,y))/∂y^2 )=0
$$\mathrm{solve} \\ $$$$\mathrm{partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$${x}\frac{\partial{f}\left({x},{y}\right)}{\partial{x}}+{y}\frac{\partial{f}\left({x},{y}\right)}{\partial{y}}={f}\left({x},{y}\right)\mathrm{ln}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\frac{\partial^{\mathrm{2}} {f}\left({x},{y}\right)}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {f}\left({x},{y}\right)}{\partial{y}^{\mathrm{2}} }=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *