Menu Close

Help-me-solve-this-dy-dx-a-y-b-x-0-




Question Number 214813 by ajfour last updated on 20/Dec/24
Help me solve this  (dy/dx)+(a/y)+b(√x)=0
$${Help}\:{me}\:{solve}\:{this} \\ $$$$\frac{{dy}}{{dx}}+\frac{{a}}{{y}}+{b}\sqrt{{x}}=\mathrm{0} \\ $$
Commented by ajfour last updated on 20/Dec/24
https://youtu.be/H53vv0XMRs4?si=eeFguqQqwBJDXTTU
Answered by issac last updated on 20/Dec/24
(dy/dx)+(a/y)+b(√(x ))=(y/x)+(a/y)+b(√x)=0  xy((y/x)+(a/y)+b(√x))=0  y^2 +ax+bxy(√x)=0  y=((−bx(√x)±(√(b^2 x^3 −4ax)))/2)
$$\frac{\cancel{\mathrm{d}}{y}}{\cancel{\mathrm{d}}{x}}+\frac{{a}}{{y}}+{b}\sqrt{{x}\:}=\frac{{y}}{{x}}+\frac{{a}}{{y}}+{b}\sqrt{{x}}=\mathrm{0} \\ $$$${xy}\left(\frac{{y}}{{x}}+\frac{{a}}{{y}}+{b}\sqrt{{x}}\right)=\mathrm{0} \\ $$$${y}^{\mathrm{2}} +{ax}+{bxy}\sqrt{{x}}=\mathrm{0} \\ $$$${y}=\frac{−{bx}\sqrt{{x}}\pm\sqrt{{b}^{\mathrm{2}} {x}^{\mathrm{3}} −\mathrm{4}{ax}}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 20/Dec/24
(dy/dx)    how come?!
$$\frac{\cancel{\mathrm{d}}{y}}{\cancel{\mathrm{d}}{x}}\:\:\:\:{how}\:{come}?! \\ $$
Commented by TonyCWX08 last updated on 20/Dec/24
Wrong.  That′s a differential equation!
$${Wrong}. \\ $$$${That}'{s}\:{a}\:{differential}\:{equation}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *