Question Number 214853 by liuxinnan last updated on 21/Dec/24
$$\int\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} {x}}{dx}=? \\ $$
Commented by liuxinnan last updated on 21/Dec/24
$${I}\:{had}\:{long}\:{time}\:{not}\:{look}\:{through} \\ $$$${this}\:{app}\:,{I}\:{just}\:{find} \\ $$
Answered by TonyCWX08 last updated on 21/Dec/24
Commented by TonyCWX08 last updated on 21/Dec/24
$${If}\:{it}'{s}\:{too}\:{blurry},\:{please}\:{mention}. \\ $$$${I}'{ll}\:{write}\:{them}\:{in}\:{LaTeX}\:{form}. \\ $$
Answered by Frix last updated on 21/Dec/24
$$\int\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}{dx}=\int\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{2}−\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{4}}\int\frac{{dx}}{\:\sqrt{\mathrm{2}}−\mathrm{cos}\:{x}}−\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{4}}\int\frac{{dx}}{\:\sqrt{\mathrm{2}}+\mathrm{cos}\:{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{dt}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){t}^{\mathrm{2}} −\mathrm{1}+\sqrt{\mathrm{2}}}+\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{dt}}{\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){t}^{\mathrm{2}} −\mathrm{1}−\sqrt{\mathrm{2}}}= \\ $$$$=\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \:\left(\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){t}\right)\:−\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \:\left(\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){t}\right)\:= \\ $$$$==\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \:\left(\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right)\:−\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \:\left(\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\right)\:+{C} \\ $$