Menu Close

Question-214876




Question Number 214876 by mr W last updated on 22/Dec/24
Commented by TonyCWX08 last updated on 22/Dec/24
Want a clarification  Does the tangent point at Blue circle cuts the line into 2 equal parts?  If no, then I have no idea.
$${Want}\:{a}\:{clarification} \\ $$$${Does}\:{the}\:{tangent}\:{point}\:{at}\:{Blue}\:{circle}\:{cuts}\:{the}\:{line}\:{into}\:\mathrm{2}\:{equal}\:{parts}? \\ $$$${If}\:{no},\:{then}\:{I}\:{have}\:{no}\:{idea}. \\ $$
Commented by mr W last updated on 22/Dec/24
yes.  everything is as it looks like:  blue triangle is right−angled.  yellow circle is inscribed in the  blue triangle and touches the big  circle.  the blue circle touches the big circle  and the blue side at the middle point.
$${yes}. \\ $$$${everything}\:{is}\:{as}\:{it}\:{looks}\:{like}: \\ $$$${blue}\:{triangle}\:{is}\:{right}−{angled}. \\ $$$${yellow}\:{circle}\:{is}\:{inscribed}\:{in}\:{the} \\ $$$${blue}\:{triangle}\:{and}\:{touches}\:{the}\:{big} \\ $$$${circle}. \\ $$$${the}\:{blue}\:{circle}\:{touches}\:{the}\:{big}\:{circle} \\ $$$${and}\:{the}\:{blue}\:{side}\:{at}\:{the}\:{middle}\:{point}. \\ $$
Commented by TonyCWX08 last updated on 22/Dec/24
Oh.  Then I know what to do!
$${Oh}. \\ $$$${Then}\:{I}\:{know}\:{what}\:{to}\:{do}! \\ $$
Answered by TonyCWX08 last updated on 22/Dec/24
AC=13  a=((13+12+5)/2)=2  CG=6.5  GH=12+5+13−3−6.5=3.5    OC^2 =OG^2 +6.5^2     OX=OP−2  OX^2 =XF^2 +OF^2   (OP−2)^2 =3.5^2 +(2+OG)^2   OP^2 −4OP+4=12.25+4+4OG+OG^2   OG^2 +42.25−4OP=12.25+4OG+OG^2   42.25−4OP=12.25+4OG  −4OP−4OG=−30  OP+OG=7.5    Observe that   2b=OP+OH  2b=7.5  b=3.75    (b/a)=((3.75)/2)=1.875
$${AC}=\mathrm{13} \\ $$$${a}=\frac{\mathrm{13}+\mathrm{12}+\mathrm{5}}{\mathrm{2}}=\mathrm{2} \\ $$$${CG}=\mathrm{6}.\mathrm{5} \\ $$$${GH}=\mathrm{12}+\mathrm{5}+\mathrm{13}−\mathrm{3}−\mathrm{6}.\mathrm{5}=\mathrm{3}.\mathrm{5} \\ $$$$ \\ $$$${OC}^{\mathrm{2}} ={OG}^{\mathrm{2}} +\mathrm{6}.\mathrm{5}^{\mathrm{2}} \\ $$$$ \\ $$$${OX}={OP}−\mathrm{2} \\ $$$${OX}^{\mathrm{2}} ={XF}^{\mathrm{2}} +{OF}^{\mathrm{2}} \\ $$$$\left({OP}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{3}.\mathrm{5}^{\mathrm{2}} +\left(\mathrm{2}+{OG}\right)^{\mathrm{2}} \\ $$$${OP}^{\mathrm{2}} −\mathrm{4}{OP}+\mathrm{4}=\mathrm{12}.\mathrm{25}+\mathrm{4}+\mathrm{4}{OG}+{OG}^{\mathrm{2}} \\ $$$${OG}^{\mathrm{2}} +\mathrm{42}.\mathrm{25}−\mathrm{4}{OP}=\mathrm{12}.\mathrm{25}+\mathrm{4}{OG}+{OG}^{\mathrm{2}} \\ $$$$\mathrm{42}.\mathrm{25}−\mathrm{4}{OP}=\mathrm{12}.\mathrm{25}+\mathrm{4}{OG} \\ $$$$−\mathrm{4}{OP}−\mathrm{4}{OG}=−\mathrm{30} \\ $$$${OP}+{OG}=\mathrm{7}.\mathrm{5} \\ $$$$ \\ $$$${Observe}\:{that}\: \\ $$$$\mathrm{2}{b}={OP}+{OH} \\ $$$$\mathrm{2}{b}=\mathrm{7}.\mathrm{5} \\ $$$${b}=\mathrm{3}.\mathrm{75} \\ $$$$ \\ $$$$\frac{{b}}{{a}}=\frac{\mathrm{3}.\mathrm{75}}{\mathrm{2}}=\mathrm{1}.\mathrm{875} \\ $$
Commented by TonyCWX08 last updated on 22/Dec/24
Commented by mr W last updated on 22/Dec/24
right sir!
$${right}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *