Menu Close

Can-we-expand-the-Descartes-Theorem-to-more-than-4-circles-




Question Number 214936 by TonyCWX08 last updated on 24/Dec/24
Can we expand the Descartes′ Theorem to more than 4 circles?
$${Can}\:{we}\:{expand}\:{the}\:{Descartes}'\:{Theorem}\:{to}\:{more}\:{than}\:\mathrm{4}\:{circles}? \\ $$
Commented by mr W last updated on 25/Dec/24
such that two circles touch each  other, their radii can be any values.    such that three circles touch each  other, their radii can be any values.    such that four circles touch each  other, their radii must satisfy a  certain relation. this is the  Descartes′ theorem.    such that 5 (or more) circles touch  each other, this is not possible!
$${such}\:{that}\:\boldsymbol{{two}}\:{circles}\:{touch}\:{each} \\ $$$${other},\:{their}\:{radii}\:{can}\:{be}\:{any}\:{values}. \\ $$$$ \\ $$$${such}\:{that}\:\boldsymbol{{three}}\:{circles}\:{touch}\:{each} \\ $$$${other},\:{their}\:{radii}\:{can}\:{be}\:{any}\:{values}. \\ $$$$ \\ $$$${such}\:{that}\:\boldsymbol{{four}}\:{circles}\:{touch}\:{each} \\ $$$${other},\:{their}\:{radii}\:{must}\:{satisfy}\:{a} \\ $$$${certain}\:{relation}.\:{this}\:{is}\:{the} \\ $$$${Descartes}'\:{theorem}. \\ $$$$ \\ $$$${such}\:{that}\:\mathrm{5}\:\left(\boldsymbol{{or}}\:\boldsymbol{{more}}\right)\:{circles}\:{touch} \\ $$$${each}\:{other},\:\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{not}}\:\boldsymbol{{possible}}! \\ $$
Commented by GDVilla last updated on 24/Dec/24
I think not
$$\mathrm{I}\:\mathrm{think}\:\mathrm{not} \\ $$$$ \\ $$
Commented by mr W last updated on 25/Dec/24
it′s just impossible that there exist  5 (or more) circles which touch each  other!
$${it}'{s}\:{just}\:{impossible}\:{that}\:{there}\:{exist} \\ $$$$\mathrm{5}\:\left({or}\:{more}\right)\:{circles}\:{which}\:{touch}\:{each} \\ $$$${other}! \\ $$
Commented by TonyCWX08 last updated on 25/Dec/24
Commented by TonyCWX08 last updated on 25/Dec/24
What about this?
$${What}\:{about}\:{this}? \\ $$
Commented by mr W last updated on 25/Dec/24
it doesn′t show that each circle   touches every other circles. again,  there are at most 4 circles which  can touch each other.
$${it}\:{doesn}'{t}\:{show}\:{that}\:{each}\:{circle}\: \\ $$$${touches}\:{every}\:{other}\:{circles}.\:{again}, \\ $$$${there}\:{are}\:{at}\:{most}\:\mathrm{4}\:{circles}\:{which} \\ $$$${can}\:{touch}\:{each}\:{other}.\: \\ $$
Commented by mr W last updated on 25/Dec/24
these are examples that all circles  touch each other:
$${these}\:{are}\:{examples}\:{that}\:{all}\:{circles} \\ $$$${touch}\:{each}\:{other}: \\ $$
Commented by mr W last updated on 25/Dec/24
Commented by mr W last updated on 25/Dec/24
this is not an example that all   circles touch each other:
$${this}\:{is}\:{not}\:{an}\:{example}\:{that}\:{all}\: \\ $$$${circles}\:{touch}\:{each}\:{other}: \\ $$
Commented by mr W last updated on 25/Dec/24
Commented by TonyCWX08 last updated on 25/Dec/24
Okay sir.
$${Okay}\:{sir}. \\ $$
Commented by TonyCWX08 last updated on 25/Dec/24
Can you solve for the area of shaded region?
$${Can}\:{you}\:{solve}\:{for}\:{the}\:{area}\:{of}\:{shaded}\:{region}? \\ $$
Commented by mr W last updated on 25/Dec/24
a series of circles inscribed between  two circles like following example  are a so−called Steiner chain.
$${a}\:{series}\:{of}\:{circles}\:{inscribed}\:{between} \\ $$$${two}\:{circles}\:{like}\:{following}\:{example} \\ $$$${are}\:{a}\:{so}−{called}\:\boldsymbol{{Steiner}}\:\boldsymbol{{chain}}. \\ $$
Commented by mr W last updated on 25/Dec/24
Commented by TonyCWX08 last updated on 25/Dec/24
Okay.  Thanks.  I′ll deal it myself.
$${Okay}. \\ $$$${Thanks}. \\ $$$${I}'{ll}\:{deal}\:{it}\:{myself}. \\ $$
Commented by mr W last updated on 25/Dec/24
tell me your result when you′ve got  it.
$${tell}\:{me}\:{your}\:{result}\:{when}\:{you}'{ve}\:{got} \\ $$$${it}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *