Menu Close

x-2-2000x-1-0-Roots-a-and-b-x-2-2008x-1-0-Roots-c-and-d-Find-a-c-b-d-a-d-b-c-




Question Number 215072 by hardmath last updated on 27/Dec/24
x^2  + 2000x + 1 = 0  Roots:  a  and  b  x^2  − 2008x − 1 = 0  Roots:  c  and  d  Find:  (a+c)(b+d)(a−d)(b−c) = ?
$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2000x}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{Roots}:\:\:\boldsymbol{\mathrm{a}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{b}} \\ $$$$\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{2008x}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{Roots}:\:\:\boldsymbol{\mathrm{c}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{d}} \\ $$$$\mathrm{Find}:\:\:\left(\mathrm{a}+\mathrm{c}\right)\left(\mathrm{b}+\mathrm{d}\right)\left(\mathrm{a}−\mathrm{d}\right)\left(\mathrm{b}−\mathrm{c}\right)\:=\:? \\ $$
Commented by TonyCWX08 last updated on 28/Dec/24
Next time.  Have your answer as ANSWER.  Not COMMENT.
$${Next}\:{time}. \\ $$$${Have}\:{your}\:{answer}\:{as}\:{ANSWER}. \\ $$$${Not}\:{COMMENT}. \\ $$
Commented by Abdullahrussell last updated on 28/Dec/24
 (a+c)(b+d)(a−d)(b−c)   =(ab+ad+bc+cd)(ab−ac−bd+cd)  =(1+ad+bc−1)(1−ac−bd−1)  =−(ad+bc)(ac+bd)  =−(a^2 cd+abd^2 +abc^2 +b^2 cd)  =−(−a^2 +d^2 +c^2 −b^2 )  =a^2 +b^2 −(c^2 +d^2 )  =(a+b)^2 −2ab−(c+d)^2 +2cd  =(−2000)^2 −2−(2008)^2 −2  =(2000+2008)(2000−2008)−4  =4008×−8−4  =−32064−4=−32068
$$\:\left({a}+{c}\right)\left({b}+{d}\right)\left({a}−{d}\right)\left({b}−{c}\right) \\ $$$$\:=\left({ab}+{ad}+{bc}+{cd}\right)\left({ab}−{ac}−{bd}+{cd}\right) \\ $$$$=\left(\mathrm{1}+{ad}+{bc}−\mathrm{1}\right)\left(\mathrm{1}−{ac}−{bd}−\mathrm{1}\right) \\ $$$$=−\left({ad}+{bc}\right)\left({ac}+{bd}\right) \\ $$$$=−\left({a}^{\mathrm{2}} {cd}+{abd}^{\mathrm{2}} +{abc}^{\mathrm{2}} +{b}^{\mathrm{2}} {cd}\right) \\ $$$$=−\left(−{a}^{\mathrm{2}} +{d}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} \right) \\ $$$$={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right) \\ $$$$=\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}−\left({c}+{d}\right)^{\mathrm{2}} +\mathrm{2}{cd} \\ $$$$=\left(−\mathrm{2000}\right)^{\mathrm{2}} −\mathrm{2}−\left(\mathrm{2008}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$=\left(\mathrm{2000}+\mathrm{2008}\right)\left(\mathrm{2000}−\mathrm{2008}\right)−\mathrm{4} \\ $$$$=\mathrm{4008}×−\mathrm{8}−\mathrm{4} \\ $$$$=−\mathrm{32064}−\mathrm{4}=−\mathrm{32068} \\ $$
Commented by MathematicalUser2357 last updated on 28/Dec/24
You better not to be angry
Answered by TonyCWX08 last updated on 28/Dec/24
a+b=−2000  ab=1  c+d=2008  cd=−1    (a+c)(b+d)  =ab+ad+bc+cd  =ad+bc    (a−d)(b−c)  =ab−ac−bd+cd  =−ac−bd    (ad+bc)(−ac−bd)  =−a^2 cd−abd^2 −ac^2 b−b^2 cd  =a^2 −d^2 −c^2 +b^2   =a^2 +b^2 −(c^2 +d^2 )  =((a+b)^2 −2ac)−((c+d)^2 −2cd)  =2000^2 −2−(2008^2 +2)  =2000^2 −2008^2 −4  =−32068
$${a}+{b}=−\mathrm{2000} \\ $$$${ab}=\mathrm{1} \\ $$$${c}+{d}=\mathrm{2008} \\ $$$${cd}=−\mathrm{1} \\ $$$$ \\ $$$$\left({a}+{c}\right)\left({b}+{d}\right) \\ $$$$={ab}+{ad}+{bc}+{cd} \\ $$$$={ad}+{bc} \\ $$$$ \\ $$$$\left({a}−{d}\right)\left({b}−{c}\right) \\ $$$$={ab}−{ac}−{bd}+{cd} \\ $$$$=−{ac}−{bd} \\ $$$$ \\ $$$$\left({ad}+{bc}\right)\left(−{ac}−{bd}\right) \\ $$$$=−{a}^{\mathrm{2}} {cd}−{abd}^{\mathrm{2}} −{ac}^{\mathrm{2}} {b}−{b}^{\mathrm{2}} {cd} \\ $$$$={a}^{\mathrm{2}} −{d}^{\mathrm{2}} −{c}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right) \\ $$$$=\left(\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ac}\right)−\left(\left({c}+{d}\right)^{\mathrm{2}} −\mathrm{2}{cd}\right) \\ $$$$=\mathrm{2000}^{\mathrm{2}} −\mathrm{2}−\left(\mathrm{2008}^{\mathrm{2}} +\mathrm{2}\right) \\ $$$$=\mathrm{2000}^{\mathrm{2}} −\mathrm{2008}^{\mathrm{2}} −\mathrm{4} \\ $$$$=−\mathrm{32068} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *