Question Number 215094 by ajfour last updated on 28/Dec/24
Commented by ajfour last updated on 28/Dec/24
A question discussed Statics+Geometry
https://youtu.be/vktsHDGgBlw?si=z6XC7xw6G8m6XjrS
Commented by mr W last updated on 28/Dec/24
Commented by mr W last updated on 28/Dec/24
$$\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha−\theta\right)}{\mathrm{sin}\:\alpha}=\frac{\mathrm{sin}\:\left(\alpha+\theta\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right)} \\ $$$$\Rightarrow\mathrm{tan}\:\left(\alpha+\theta\right)=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}=\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right) \\ $$$$\Rightarrow\alpha+\theta=\frac{\pi}{\mathrm{2}}−\alpha\:\Rightarrow\theta=\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha \\ $$
Commented by Frix last updated on 29/Dec/24
$$\frac{{R}^{\mathrm{2}} }{{r}^{\mathrm{2}} }=\mathrm{12}+\mathrm{4}\sqrt{\mathrm{3}} \\ $$$$\left(\mathrm{Simply}\:\mathrm{had}\:\mathrm{forgotten}\:\mathrm{to}\:\sqrt{…}\right) \\ $$
Commented by ajfour last updated on 28/Dec/24
Explain me the first line itself sir.
Commented by mr W last updated on 28/Dec/24
$$\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha−\theta\right)}{\mathrm{sin}\:\alpha}=\frac{{CD}}{{AC}}=\frac{{CD}}{{BC}}=\frac{\mathrm{sin}\:\left(\alpha+\theta\right)}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\alpha\right)} \\ $$
Commented by ajfour last updated on 28/Dec/24
$${Yeah} \\ $$$$\:\theta_{{ajfour}} +\theta_{{mrw}} =\mathrm{0}\:\:\:\: \\ $$$${we}\:{have}\:{just}\:{marked}\:{differently}. \\ $$$${we}\:{have}\:{same}\:{situation}.\:{for}\:{example} \\ $$$${check}\:{for}\:\alpha=\mathrm{60}°\:. \\ $$
Commented by ajfour last updated on 28/Dec/24
$${Thanks}\:{sir}\:{Frix},\:{you}\:{came}\:{back}\: \\ $$$${after}\:{really}\:{some}\:{time}. \\ $$
Commented by mr W last updated on 29/Dec/24
$${in}\:{this}\:{case}\:{we}\:{can}\:{even}\:“{see}''\:{the}\: \\ $$$${result}\:{obviously}: \\ $$
Commented by mr W last updated on 29/Dec/24
Commented by ajfour last updated on 29/Dec/24
https://youtu.be/m_z86aXCFIo?si=vpI3_hoVBncvRfE_
Answered by mr W last updated on 29/Dec/24
Commented by mr W last updated on 29/Dec/24
$$\mathrm{sin}\:\theta=\frac{{r}}{{R}}=\frac{\mathrm{1}}{{k}} \\ $$$${AB}=\mathrm{2}\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$${OB}=\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }+\sqrt{\left(\sqrt{\mathrm{2}}{R}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }=\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }+\sqrt{\mathrm{2}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\mathrm{cos}\:\mathrm{2}\theta=\frac{\mathrm{4}\left({R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)+{R}^{\mathrm{2}} −{r}^{\mathrm{2}} +\mathrm{2}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} +\mathrm{2}\sqrt{\left({R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)\left(\mathrm{2}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)}−{R}^{\mathrm{2}} }{\mathrm{4}\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }\left(\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }+\sqrt{\mathrm{2}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }\right)} \\ $$$$\:\:\:\:\:=\frac{\mathrm{3}{k}^{\mathrm{2}} −\mathrm{3}+\sqrt{\left({k}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}\right)}}{\:\mathrm{2}\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\left(\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}+\sqrt{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}}\right)} \\ $$$$\frac{\mathrm{3}{k}^{\mathrm{2}} −\mathrm{3}+\sqrt{\left({k}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}\right)}}{\:\mathrm{2}\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\left(\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}+\sqrt{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}}\right)}=\mathrm{1}−\frac{\mathrm{2}}{{k}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{k}^{\mathrm{2}} +\mathrm{4}}{{k}^{\mathrm{2}} −\mathrm{4}}=\sqrt{\frac{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\Rightarrow{k}^{\mathrm{4}} −\mathrm{24}{k}^{\mathrm{2}} +\mathrm{32}=\mathrm{0} \\ $$$$\Rightarrow{k}^{\mathrm{2}} =\mathrm{4}\left(\mathrm{3}+\sqrt{\mathrm{7}}\right) \\ $$$$\frac{{R}}{{r}}={k}=\mathrm{2}\sqrt{\mathrm{3}+\sqrt{\mathrm{7}}}\approx\mathrm{4}.\mathrm{752158} \\ $$
Commented by mr W last updated on 29/Dec/24
Commented by Frix last updated on 29/Dec/24
$$\mathrm{Let}\:{R}=\mathrm{1} \\ $$$$\Rightarrow \\ $$$${C}_{\mathrm{1}} :\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${C}_{\mathrm{2}} :\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${L}_{\mathrm{1}} :\:{y}=\frac{\mathrm{1}+\sqrt{\mathrm{2}{p}−{p}^{\mathrm{2}} }}{{p}}{x} \\ $$$${L}_{\mathrm{2}} :\:{y}=\frac{\sqrt{\mathrm{2}{p}−{p}^{\mathrm{2}} }}{{p}}{x}+\mathrm{1} \\ $$$${C}_{\mathrm{2}} \cap{L}_{\mathrm{2}} =\left\{{T}_{\mathrm{2}} \right\}\:\Rightarrow\:{p}=\mathrm{2}−\mathrm{2}{r}^{\mathrm{2}} \\ $$$${C}_{\mathrm{2}} \cap{L}_{\mathrm{1}} =\left\{{T}_{\mathrm{1}} \right\}\:\Rightarrow\:{r}=\mathrm{2}\sqrt{\mathrm{3}+\sqrt{\mathrm{7}}}=\mathrm{4}.\mathrm{75215}… \\ $$
Commented by mr W last updated on 29/Dec/24