Menu Close

Question-215395




Question Number 215395 by mr W last updated on 05/Jan/25
Commented by mr W last updated on 06/Jan/25
a ball with mass m falls from the  hight h and hits the end of the rod  jutting out off the edge of a table.  the length of the uniform rod with   mass M is L=a+b (a>b).    1) find the maximum hight which  the ball will reach after collision.    2) find the maximum hight which  the rod will reach after collision.  (supposed that the table is removed  away after the collision so that the  rod can move freely).
$${a}\:{ball}\:{with}\:{mass}\:{m}\:{falls}\:{from}\:{the} \\ $$$${hight}\:{h}\:{and}\:{hits}\:{the}\:{end}\:{of}\:{the}\:{rod} \\ $$$${jutting}\:{out}\:{off}\:{the}\:{edge}\:{of}\:{a}\:{table}. \\ $$$${the}\:{length}\:{of}\:{the}\:{uniform}\:{rod}\:{with}\: \\ $$$${mass}\:{M}\:{is}\:{L}={a}+{b}\:\left({a}>{b}\right). \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{maximum}\:{hight}\:{which} \\ $$$${the}\:{ball}\:{will}\:{reach}\:{after}\:{collision}. \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{maximum}\:{hight}\:{which} \\ $$$${the}\:{rod}\:{will}\:{reach}\:{after}\:{collision}. \\ $$$$\left({supposed}\:{that}\:{the}\:{table}\:{is}\:{removed}\right. \\ $$$${away}\:{after}\:{the}\:{collision}\:{so}\:{that}\:{the} \\ $$$$\left.{rod}\:{can}\:{move}\:{freely}\right). \\ $$
Commented by ajfour last updated on 07/Jan/25
https://youtu.be/2O_ZoICD2Ss?si=r85hss2CP8u60lv6 Motion of charge in variable magnetic field
Commented by mr W last updated on 07/Jan/25
��
Answered by mr W last updated on 07/Jan/25
Commented by mr W last updated on 10/Jan/25
Commented by mr W last updated on 10/Jan/25
f=μN=μmg cos θ  v=ωr  I_p =((2mr^2 )/5)+mr^2 =((7mr^2 )/5)  mg(sin θ+μcos θ)s_1 =((mu^2 )/2)−(1/2)×((7mr^2 ω^2 )/5)  ⇒g(sin θ+μcos θ)s_1 =(u^2 /2)−((7r^2 ω^2 )/(10))  a=(sin θ+μ cos θ)g  α=((fr)/I)=((μmgr cos θ)/((2mr^2 )/5))=((5μg cos θ)/(2r))  ((u−v)/a)=((u−rω)/((sin θ+μ cos θ)g))=(ω/α)=((2rω)/(5μg cos θ))  ((u−rω)/(tan θ+μ))=((2rω)/(5μ))  ⇒rω=((5μu)/(7μ+2 tan θ))  g(sin θ+μcos θ)s_1 =(u^2 /2)−(7/(10))×(((5μu)/(7μ+2 tan θ)))^2   s_1 =(([1−((35μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))  mgs_2 sin θ=(1/2)×((7mr^2 ω^2 )/5)  s_2 =((7r^2 ω^2 )/(10g sin θ))=(7/(10g sin θ))×(((5μu)/(7μ+2 tan θ)))^2   ⇒s_2 =((35μ^2 u^2 )/(2g sin θ (7μ+2 tan θ)^2 ))  s=s_1 +s_2   ⇒s=(([1+((35μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))+((35μ^2 u^2 )/(2g sin θ (7μ+2 tan θ)^2 ))
$${f}=\mu{N}=\mu{mg}\:\mathrm{cos}\:\theta \\ $$$${v}=\omega{r} \\ $$$${I}_{{p}} =\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}+{mr}^{\mathrm{2}} =\frac{\mathrm{7}{mr}^{\mathrm{2}} }{\mathrm{5}} \\ $$$${mg}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right){s}_{\mathrm{1}} =\frac{{mu}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{7}{mr}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{5}} \\ $$$$\Rightarrow{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right){s}_{\mathrm{1}} =\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{7}{r}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{10}} \\ $$$${a}=\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right){g} \\ $$$$\alpha=\frac{{fr}}{{I}}=\frac{\mu{mgr}\:\mathrm{cos}\:\theta}{\frac{\mathrm{2}{mr}^{\mathrm{2}} }{\mathrm{5}}}=\frac{\mathrm{5}\mu{g}\:\mathrm{cos}\:\theta}{\mathrm{2}{r}} \\ $$$$\frac{{u}−{v}}{{a}}=\frac{{u}−{r}\omega}{\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right){g}}=\frac{\omega}{\alpha}=\frac{\mathrm{2}{r}\omega}{\mathrm{5}\mu{g}\:\mathrm{cos}\:\theta} \\ $$$$\frac{{u}−{r}\omega}{\mathrm{tan}\:\theta+\mu}=\frac{\mathrm{2}{r}\omega}{\mathrm{5}\mu} \\ $$$$\Rightarrow{r}\omega=\frac{\mathrm{5}\mu{u}}{\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta} \\ $$$${g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right){s}_{\mathrm{1}} =\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{7}}{\mathrm{10}}×\left(\frac{\mathrm{5}\mu{u}}{\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta}\right)^{\mathrm{2}} \\ $$$${s}_{\mathrm{1}} =\frac{\left[\mathrm{1}−\frac{\mathrm{35}\mu^{\mathrm{2}} }{\left(\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\right]{u}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right)} \\ $$$${mgs}_{\mathrm{2}} \mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{7}{mr}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{5}} \\ $$$${s}_{\mathrm{2}} =\frac{\mathrm{7}{r}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{10}{g}\:\mathrm{sin}\:\theta}=\frac{\mathrm{7}}{\mathrm{10}{g}\:\mathrm{sin}\:\theta}×\left(\frac{\mathrm{5}\mu{u}}{\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{s}_{\mathrm{2}} =\frac{\mathrm{35}\mu^{\mathrm{2}} {u}^{\mathrm{2}} }{\mathrm{2}{g}\:\mathrm{sin}\:\theta\:\left(\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$$${s}={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \\ $$$$\Rightarrow{s}=\frac{\left[\mathrm{1}+\frac{\mathrm{35}\mu^{\mathrm{2}} }{\left(\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\right]{u}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right)}+\frac{\mathrm{35}\mu^{\mathrm{2}} {u}^{\mathrm{2}} }{\mathrm{2}{g}\:\mathrm{sin}\:\theta\:\left(\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} } \\ $$
Commented by mr W last updated on 08/Jan/25
u=(√(2gh))  mv=J_1 −mu  V=(((a−b)ω)/2)  MV=J_2 −J_1   ((M(a−b)ω)/2)=J_2 −m(v+u)  J_2 =((M(a−b)ω)/2)+m(v+u)  ((M(a+b)^2 ω)/(12))=J_1 b−(((a−b)J_2 )/2)  ((M(a+b)^2 ω)/(12))=m(v+u)b−(((a−b))/2)[((M(a−b)ω)/2)+m(v+u)]  (((a^2 +b^2 −ab)Mω)/3)=((m(3b−a)(v+u))/2)  ⇒v=((2M(a^2 +b^2 −ab)ω)/(3m(3b−a)))−u  ((m(u^2 −v^2 ))/2)=((MV^2 )/2)+(1/2)×((M(a+b)^2 ω^2 )/(12))  ((m(u^2 −v^2 ))/M)=(((a−b)^2 ω^2 )/4)+(((a+b)^2 ω^2 )/(12))  v^2 =u^2 −((M(a^2 +b^2 −ab)ω^2 )/(3m))  with μ=(m/M)  [((2(a^2 +b^2 −ab)ω)/(3μ(3b−a)))−u]^2 =u^2 −(((a^2 +b^2 −ab)ω^2 )/(3μ))  ⇒ω=((12μ(3b−a)u)/(4(a^2 +b^2 −ab)+3μ(3b−a)^2 ))  x_A =(((a+b)cos (ωt))/2)  y_A =Vt−((gt^2 )/2)+(((a+b)sin (ωt))/2)  y_A =(((a−b)ωt)/2)−((gt^2 )/2)+(((a+b)sin (ωt))/2)  v=[(8/(4+((3μ(3b−a)^2 )/(a^2 +b^2 −ab))))−1]u  v=0 when μ=((4(a^2 +b^2 −ab))/(3(3b−a)^2 ))  for v>0, i.e. when the ball rebounds  from the rod, it can reach a maximum  hight h_(max)  with  (h_(max) /h)=((v/u))^2 =[(8/(4+((3μ(3b−a)^2 )/(a^2 +b^2 −ab))))−1]^2   with (b/a)=λ  (h_(max) /h)=[(8/(4+((3μ(3λ−1)^2 )/(λ^2 −λ+1))))−1]^2
$${u}=\sqrt{\mathrm{2}{gh}} \\ $$$${mv}={J}_{\mathrm{1}} −{mu} \\ $$$${V}=\frac{\left({a}−{b}\right)\omega}{\mathrm{2}} \\ $$$${MV}={J}_{\mathrm{2}} −{J}_{\mathrm{1}} \\ $$$$\frac{{M}\left({a}−{b}\right)\omega}{\mathrm{2}}={J}_{\mathrm{2}} −{m}\left({v}+{u}\right) \\ $$$${J}_{\mathrm{2}} =\frac{{M}\left({a}−{b}\right)\omega}{\mathrm{2}}+{m}\left({v}+{u}\right) \\ $$$$\frac{{M}\left({a}+{b}\right)^{\mathrm{2}} \omega}{\mathrm{12}}={J}_{\mathrm{1}} {b}−\frac{\left({a}−{b}\right){J}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{M}\left({a}+{b}\right)^{\mathrm{2}} \omega}{\mathrm{12}}={m}\left({v}+{u}\right){b}−\frac{\left({a}−{b}\right)}{\mathrm{2}}\left[\frac{{M}\left({a}−{b}\right)\omega}{\mathrm{2}}+{m}\left({v}+{u}\right)\right] \\ $$$$\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right){M}\omega}{\mathrm{3}}=\frac{{m}\left(\mathrm{3}{b}−{a}\right)\left({v}+{u}\right)}{\mathrm{2}} \\ $$$$\Rightarrow{v}=\frac{\mathrm{2}{M}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)\omega}{\mathrm{3}{m}\left(\mathrm{3}{b}−{a}\right)}−{u} \\ $$$$\frac{{m}\left({u}^{\mathrm{2}} −{v}^{\mathrm{2}} \right)}{\mathrm{2}}=\frac{{MV}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}×\frac{{M}\left({a}+{b}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\frac{{m}\left({u}^{\mathrm{2}} −{v}^{\mathrm{2}} \right)}{{M}}=\frac{\left({a}−{b}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{4}}+\frac{\left({a}+{b}\right)^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{12}} \\ $$$${v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\frac{{M}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)\omega^{\mathrm{2}} }{\mathrm{3}{m}} \\ $$$${with}\:\mu=\frac{{m}}{{M}} \\ $$$$\left[\frac{\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)\omega}{\mathrm{3}\mu\left(\mathrm{3}{b}−{a}\right)}−{u}\right]^{\mathrm{2}} ={u}^{\mathrm{2}} −\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)\omega^{\mathrm{2}} }{\mathrm{3}\mu} \\ $$$$\Rightarrow\omega=\frac{\mathrm{12}\mu\left(\mathrm{3}{b}−{a}\right){u}}{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)+\mathrm{3}\mu\left(\mathrm{3}{b}−{a}\right)^{\mathrm{2}} } \\ $$$${x}_{{A}} =\frac{\left({a}+{b}\right)\mathrm{cos}\:\left(\omega{t}\right)}{\mathrm{2}} \\ $$$${y}_{{A}} ={Vt}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left({a}+{b}\right)\mathrm{sin}\:\left(\omega{t}\right)}{\mathrm{2}} \\ $$$${y}_{{A}} =\frac{\left({a}−{b}\right)\omega{t}}{\mathrm{2}}−\frac{{gt}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left({a}+{b}\right)\mathrm{sin}\:\left(\omega{t}\right)}{\mathrm{2}} \\ $$$${v}=\left[\frac{\mathrm{8}}{\mathrm{4}+\frac{\mathrm{3}\mu\left(\mathrm{3}{b}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}}}−\mathrm{1}\right]{u} \\ $$$${v}=\mathrm{0}\:{when}\:\mu=\frac{\mathrm{4}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}\right)}{\mathrm{3}\left(\mathrm{3}{b}−{a}\right)^{\mathrm{2}} } \\ $$$${for}\:{v}>\mathrm{0},\:{i}.{e}.\:{when}\:{the}\:{ball}\:{rebounds} \\ $$$${from}\:{the}\:{rod},\:{it}\:{can}\:{reach}\:{a}\:{maximum} \\ $$$${hight}\:{h}_{{max}} \:{with} \\ $$$$\frac{{h}_{{max}} }{{h}}=\left(\frac{{v}}{{u}}\right)^{\mathrm{2}} =\left[\frac{\mathrm{8}}{\mathrm{4}+\frac{\mathrm{3}\mu\left(\mathrm{3}{b}−{a}\right)^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}}}−\mathrm{1}\right]^{\mathrm{2}} \\ $$$${with}\:\frac{{b}}{{a}}=\lambda \\ $$$$\frac{{h}_{{max}} }{{h}}=\left[\frac{\mathrm{8}}{\mathrm{4}+\frac{\mathrm{3}\mu\left(\mathrm{3}\lambda−\mathrm{1}\right)^{\mathrm{2}} }{\lambda^{\mathrm{2}} −\lambda+\mathrm{1}}}−\mathrm{1}\right]^{\mathrm{2}} \\ $$
Commented by ajfour last updated on 08/Jan/25
https://youtu.be/3wiUgK_riz8?si=pKPRqyotoxf-pwhm How far up the incline does solid ball reach?
Commented by mr W last updated on 08/Jan/25
��
Commented by mr W last updated on 09/Jan/25
Commented by mr W last updated on 09/Jan/25
Commented by mr W last updated on 09/Jan/25
Commented by mr W last updated on 09/Jan/25
Commented by ajfour last updated on 10/Jan/25
Thanks for this. by the way any error/blunder in my video lecture for this question sir, did you notice?
Commented by mr W last updated on 10/Jan/25
i got x=s_1 =(([1−((35μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))  while you got  x=(([1−((25μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))
$${i}\:{got}\:{x}={s}_{\mathrm{1}} =\frac{\left[\mathrm{1}−\frac{\mathrm{35}\mu^{\mathrm{2}} }{\left(\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\right]{u}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right)} \\ $$$${while}\:{you}\:{got} \\ $$$${x}=\frac{\left[\mathrm{1}−\frac{\mathrm{25}\mu^{\mathrm{2}} }{\left(\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta\right)^{\mathrm{2}} }\right]{u}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right)} \\ $$
Commented by ajfour last updated on 11/Jan/25
⇒g(sin θ+μcos θ)s_1 =(u^2 /2)−((7r^2 ω^2 )/(10))  Point of application of friction force moves  through s_1 −r𝛗  so  above eq. should be:  g(sin θ)s_1 +(μgcos θ)(s_1 −r𝛗)=(u^2 /2)−((7r^2 ω^2 )/(10))  i mean incline sees sphere surface   has rubbed past this length = s_1 −r𝛗  (v^2 /r^2 )=ω^2 =2(((μmgrcos θ)/((2/5)mr^2 )))𝛗  (v^2 /r^2 )=ω^2 =(((5μg)/r)cos θ)φ  μrg𝛗cos θ=(v^2 /5)=((ω^2 r^2 )/5)        hence  s_1 (sin θ+μcos θ)g−((2ω^2 r^2 )/(10))=(u^2 /2)−((7ω^2 r^2 )/(10))  s_1 =((u^2 −ω^2 r^2 )/(2g(sin θ+μcos θ)))  now  as  rω=((5μu)/(7μ+2 tan θ))  s_1 =(([1−((25μ^2 )/((7μ+2tan θ)^2 ))]u^2 )/(2g(sin θ+μcos θ)))   ★  Along this approach i would get this, sir!
$$\Rightarrow{g}\left(\mathrm{sin}\:\theta+\underline{\mu\mathrm{cos}\:\theta}\right){s}_{\mathrm{1}} =\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{7}{r}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{10}} \\ $$$${Point}\:{of}\:{application}\:{of}\:{friction}\:{force}\:{moves} \\ $$$${through}\:{s}_{\mathrm{1}} −{r}\boldsymbol{\phi}\:\:{so}\:\:{above}\:{eq}.\:{should}\:{be}: \\ $$$${g}\left(\mathrm{sin}\:\theta\right){s}_{\mathrm{1}} +\left(\mu{g}\mathrm{cos}\:\theta\right)\left({s}_{\mathrm{1}} −{r}\boldsymbol{\phi}\right)=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{7}{r}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{10}} \\ $$$${i}\:{mean}\:{incline}\:{sees}\:{sphere}\:{surface}\: \\ $$$${has}\:{rubbed}\:{past}\:{this}\:{length}\:=\:{s}_{\mathrm{1}} −{r}\boldsymbol{\phi} \\ $$$$\frac{{v}^{\mathrm{2}} }{{r}^{\mathrm{2}} }=\omega^{\mathrm{2}} =\mathrm{2}\left(\frac{\mu{mgr}\mathrm{cos}\:\theta}{\frac{\mathrm{2}}{\mathrm{5}}{mr}^{\mathrm{2}} }\right)\boldsymbol{\phi} \\ $$$$\frac{{v}^{\mathrm{2}} }{{r}^{\mathrm{2}} }=\omega^{\mathrm{2}} =\left(\frac{\mathrm{5}\mu{g}}{{r}}\mathrm{cos}\:\theta\right)\phi \\ $$$$\mu{rg}\boldsymbol{\phi}\mathrm{cos}\:\theta=\frac{{v}^{\mathrm{2}} }{\mathrm{5}}=\frac{\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{5}}\:\:\:\:\:\:\:\:{hence} \\ $$$${s}_{\mathrm{1}} \left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right){g}−\frac{\mathrm{2}\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{10}}=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{7}\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{10}} \\ $$$${s}_{\mathrm{1}} =\frac{{u}^{\mathrm{2}} −\omega^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)} \\ $$$${now}\:\:{as}\:\:{r}\omega=\frac{\mathrm{5}\mu{u}}{\mathrm{7}\mu+\mathrm{2}\:\mathrm{tan}\:\theta} \\ $$$${s}_{\mathrm{1}} =\frac{\left[\mathrm{1}−\frac{\mathrm{25}\mu^{\mathrm{2}} }{\left(\mathrm{7}\mu+\mathrm{2tan}\:\theta\right)^{\mathrm{2}} }\right]{u}^{\mathrm{2}} }{\mathrm{2}{g}\left(\mathrm{sin}\:\theta+\mu\mathrm{cos}\:\theta\right)}\:\:\:\bigstar \\ $$$${Along}\:{this}\:{approach}\:{i}\:{would}\:{get}\:{this},\:{sir}! \\ $$
Commented by mr W last updated on 11/Jan/25
you are right sir, thanks alot!
$${you}\:{are}\:{right}\:{sir},\:{thanks}\:{alot}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *