Menu Close

Find-the-area-of-the-surface-generated-by-revolving-the-curve-x-y-4-4-1-8y-2-about-the-x-axis-given-1-y-2-




Question Number 72789 by Learner-123 last updated on 02/Nov/19
Find the area of the surface generated  by revolving the curve x=(y^4 /4)+(1/(8y^2 ))   about the x−axis . (given:1≤y≤2)
$${Find}\:{the}\:{area}\:{of}\:{the}\:{surface}\:{generated} \\ $$$${by}\:{revolving}\:{the}\:{curve}\:{x}=\frac{{y}^{\mathrm{4}} }{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\: \\ $$$${about}\:{the}\:{x}−{axis}\:.\:\left({given}:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\right) \\ $$
Commented by MJS last updated on 02/Nov/19
about the x−axis?
$$\mathrm{about}\:\mathrm{the}\:{x}−\mathrm{axis}? \\ $$
Commented by Learner-123 last updated on 03/Nov/19
yes,sir!  In book the ques. says about the x−axis..
$${yes},{sir}! \\ $$$${In}\:{book}\:{the}\:{ques}.\:{says}\:{about}\:{the}\:{x}−{axis}.. \\ $$
Commented by MJS last updated on 03/Nov/19
it′s not possible about the x−axis  we would need to transform to y=f(x)  this can be done but within the borders  given for y we get  y=2((x/3))^(1/4) (√(cos ((π/6)+(1/3)arcsin ((3(√3))/(32(x^2 )^(1/3) )))))  and we cannot easily go on with this... try  if you like ;−)  2π∫_(3/8) ^((129)/(32)) y(√(1+(y′)^2 ))dx
$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{possible}\:\mathrm{about}\:\mathrm{the}\:{x}−\mathrm{axis} \\ $$$$\mathrm{we}\:\mathrm{would}\:\mathrm{need}\:\mathrm{to}\:\mathrm{transform}\:\mathrm{to}\:{y}={f}\left({x}\right) \\ $$$$\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{but}\:\mathrm{within}\:\mathrm{the}\:\mathrm{borders} \\ $$$$\mathrm{given}\:\mathrm{for}\:{y}\:\mathrm{we}\:\mathrm{get} \\ $$$${y}=\mathrm{2}\sqrt[{\mathrm{4}}]{\frac{{x}}{\mathrm{3}}}\sqrt{\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{32}\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }}\right)} \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{easily}\:\mathrm{go}\:\mathrm{on}\:\mathrm{with}\:\mathrm{this}…\:\mathrm{try} \\ $$$$\left.\mathrm{if}\:\mathrm{you}\:\mathrm{like}\:;−\right) \\ $$$$\mathrm{2}\pi\underset{\frac{\mathrm{3}}{\mathrm{8}}} {\overset{\frac{\mathrm{129}}{\mathrm{32}}} {\int}}{y}\sqrt{\mathrm{1}+\left({y}'\right)^{\mathrm{2}} }{dx} \\ $$
Commented by Learner-123 last updated on 03/Nov/19
yes,i agree, thanks sir.
$${yes},{i}\:{agree},\:{thanks}\:{sir}. \\ $$
Answered by MJS last updated on 02/Nov/19
about the y−axis  the formula is  ∫_a ^b x(√(1+(x′)^2 ))dy  x=((2y^6 +1)/(8y^2 )) ⇒ x′=((4y^6 −1)/(4y^3 ))  2π∫_1 ^2 ((2y^6 +1)/(8y^2 ))(√(1+(((4y^6 −1)/(4y^3 )))^2 ))dy=  =2π∫_1 ^2 ((2y^6 +1)/(8y^2 ))(√((16y^(12) +8y^6 +1)/(16y^6 )))dy=  =2π∫_1 ^2 ((2y^6 +1)/(8y^2 ))(√((((4y^6 +1)/(4y^3 )))^2 ))dy=  =2π∫_1 ^2 ((2y^6 +1)/(8y^2 ))×((4y^6 +1)/(4y^3 ))dy=  =(π/2)∫_1 ^2 y^7 dy+((3π)/8)∫_1 ^2 ydy+(π/(16))∫_1 ^2 (dy/y^5 )=  =[(π/(16))y^8 +((3π)/(16))y^2 −(π/(64y^4 ))]_1 ^2 =((16911π)/(1024))
$$\mathrm{about}\:\mathrm{the}\:{y}−\mathrm{axis} \\ $$$$\mathrm{the}\:\mathrm{formula}\:\mathrm{is} \\ $$$$\underset{{a}} {\overset{{b}} {\int}}{x}\sqrt{\mathrm{1}+\left({x}'\right)^{\mathrm{2}} }{dy} \\ $$$${x}=\frac{\mathrm{2}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\:\Rightarrow\:{x}'=\frac{\mathrm{4}{y}^{\mathrm{6}} −\mathrm{1}}{\mathrm{4}{y}^{\mathrm{3}} } \\ $$$$\mathrm{2}\pi\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{2}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\sqrt{\mathrm{1}+\left(\frac{\mathrm{4}{y}^{\mathrm{6}} −\mathrm{1}}{\mathrm{4}{y}^{\mathrm{3}} }\right)^{\mathrm{2}} }{dy}= \\ $$$$=\mathrm{2}\pi\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{2}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\sqrt{\frac{\mathrm{16}{y}^{\mathrm{12}} +\mathrm{8}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{16}{y}^{\mathrm{6}} }}{dy}= \\ $$$$=\mathrm{2}\pi\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{2}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }\sqrt{\left(\frac{\mathrm{4}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{4}{y}^{\mathrm{3}} }\right)^{\mathrm{2}} }{dy}= \\ $$$$=\mathrm{2}\pi\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{2}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{8}{y}^{\mathrm{2}} }×\frac{\mathrm{4}{y}^{\mathrm{6}} +\mathrm{1}}{\mathrm{4}{y}^{\mathrm{3}} }{dy}= \\ $$$$=\frac{\pi}{\mathrm{2}}\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{y}^{\mathrm{7}} {dy}+\frac{\mathrm{3}\pi}{\mathrm{8}}\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}{ydy}+\frac{\pi}{\mathrm{16}}\underset{\mathrm{1}} {\overset{\mathrm{2}} {\int}}\frac{{dy}}{{y}^{\mathrm{5}} }= \\ $$$$=\left[\frac{\pi}{\mathrm{16}}{y}^{\mathrm{8}} +\frac{\mathrm{3}\pi}{\mathrm{16}}{y}^{\mathrm{2}} −\frac{\pi}{\mathrm{64}{y}^{\mathrm{4}} }\right]_{\mathrm{1}} ^{\mathrm{2}} =\frac{\mathrm{16911}\pi}{\mathrm{1024}} \\ $$
Commented by Learner-123 last updated on 03/Nov/19
thanks sir.
$${thanks}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *