Menu Close

find-the-value-of-b-and-B-U-A-B-if-U-1-2-3-4-5-6-7-8-9-10-A-2-4-5-6-B-1-5-8-9-is-a-unoin-




Question Number 7323 by rohit meena last updated on 23/Aug/16
find the value of  Δ′Λ b and (B′U A) 𝚲 B  if U={1,2,3,4,5,6,7,8,9,10}  A={2,4,5,6}  B={1,5,8,9}  Λ is a unoin
$${find}\:{the}\:{value}\:{of} \\ $$$$\Delta'\Lambda\:{b}\:{and}\:\left({B}'{U}\:{A}\right)\:\boldsymbol{\Lambda}\:{B} \\ $$$${if}\:{U}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right\} \\ $$$${A}=\left\{\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{6}\right\} \\ $$$${B}=\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\Lambda\:{is}\:{a}\:{unoin} \\ $$
Commented by rohit meena last updated on 23/Aug/16
answer please
$${answer}\:{please} \\ $$
Commented by Rasheed Soomro last updated on 24/Aug/16
What is Δ?
$${What}\:{is}\:\Delta? \\ $$
Commented by rohit meena last updated on 24/Aug/16
A hai
$${A}\:{hai} \\ $$
Commented by rohit meena last updated on 24/Aug/16
A hai
$${A}\:{hai} \\ $$
Answered by Rasheed Soomro last updated on 24/Aug/16
 U={1,2,3,4,5,6,7,8,9,10},A={2,4,5,6}, B={1,5,8,9}  (i) A′∩B      (ii) (B ′∪A)∩B  −−−−−−−−−−−−−−−−−−−−−−−−−−  A′∩B=(U−A)∩B              =({1,2,3,4,5,6,7,8,9,10}−{2,4,5,6})∩{1,5,8,9}              ={1,3,7,8,9,10}∩{1,5,8,9}              ={1,8,9}  (B ′∪A)∩B    Way#1: First simplify using properties.  (B ′∪A)∩B=(B ′∩B)∪(A∩B) [∩ is right-distributive over ∪]                           =φ∪(A∩B)  [B ′∩B=φ]                           =A∩B                           ={2,4,5,6}∩{1,5,8,9}                            ={5}    Way#2:Using  sets directly.       B ′=U−B={1,2,3,4,5,6,7,8,9,10}−{1,5,8,9}                           ={2,3,4,6,7,10}  (B ′∪A)∩B=({2,3,4,6,7,10}∪{2,4,5,6})∩{1,5,8,9}                         ={2,3,4,5,6,7,10}∩{1,5,8,9}                         ={5}
$$\:{U}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right\},{A}=\left\{\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{6}\right\},\:{B}=\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\left({i}\right)\:{A}'\cap{B}\:\:\:\:\:\:\left({ii}\right)\:\left({B}\:'\cup{A}\right)\cap{B} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${A}'\cap{B}=\left({U}−{A}\right)\cap{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left(\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right\}−\left\{\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{6}\right\}\right)\cap\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{1},\mathrm{3},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right\}\cap\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{1},\mathrm{8},\mathrm{9}\right\} \\ $$$$\left({B}\:'\cup{A}\right)\cap{B} \\ $$$$ \\ $$$${Way}#\mathrm{1}:\:{First}\:{simplify}\:{using}\:{properties}. \\ $$$$\left({B}\:'\cup{A}\right)\cap{B}=\left({B}\:'\cap{B}\right)\cup\left({A}\cap{B}\right)\:\left[\cap\:{is}\:{right}-{distributive}\:{over}\:\cup\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\phi\cup\left({A}\cap{B}\right)\:\:\left[{B}\:'\cap{B}=\phi\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={A}\cap{B} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{6}\right\}\cap\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{5}\right\} \\ $$$$ \\ $$$${Way}#\mathrm{2}:{Using}\:\:{sets}\:{directly}.\: \\ $$$$\:\:\:\:{B}\:'={U}−{B}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right\}−\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{7},\mathrm{10}\right\} \\ $$$$\left({B}\:'\cup{A}\right)\cap{B}=\left(\left\{\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{6},\mathrm{7},\mathrm{10}\right\}\cup\left\{\mathrm{2},\mathrm{4},\mathrm{5},\mathrm{6}\right\}\right)\cap\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{10}\right\}\cap\left\{\mathrm{1},\mathrm{5},\mathrm{8},\mathrm{9}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left\{\mathrm{5}\right\} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *