Menu Close

x-3-3x-1-0-The-roots-of-the-equation-a-b-c-Find-a-1-3-b-1-3-c-1-3-




Question Number 217985 by hardmath last updated on 24/Mar/25
x^3  − 3x + 1 = 0  The roots of the equation → a , b , c  Find → (a)^(1/3)  + (b)^(1/3)  + (c)^(1/3)  = ?
x33x+1=0Therootsoftheequationa,b,cFinda3+b3+c3=?
Commented by Frix last updated on 24/Mar/25
suppose a<b<c  ⇒  a=−2cos (π/9)  b=2sin (π/(18))  c=2cos ((2π)/9)  I don′t think  −((2cos (π/9)))^(1/3) +((2sin (π/(18))))^(1/3) +((2cos ((2π)/9)))^(1/3)   is any “nice” number.  Do you have an exact answer?
supposea<b<ca=2cosπ9b=2sinπ18c=2cos2π9Idontthink2cosπ93+2sinπ183+2cos2π93isanynicenumber.Doyouhaveanexactanswer?
Commented by hardmath last updated on 24/Mar/25
  Dear professor, I don't know the answer
Dear professor, I don't know the answer
Commented by Ghisom last updated on 26/Mar/25
I found a way to solve it...  a^(1/3) +b^(1/3) +c^(1/3) =(3^(5/3) −6)^(1/3)
Ifoundawaytosolveita1/3+b1/3+c1/3=(35/36)1/3
Answered by ajfour last updated on 26/Mar/25
abc=−1  say if (abc)^(1/3) =−1  a+b+c=0  ⇒ (a^(1/3) +b^(1/3) +c^(1/3) )=0  (may be)  p^3 +Ap−1=0  p^3 =x  (x−1)^3 =−A^3 x  ⇒  3x−1−3x^2 +3x−1=−A^3 x  ⇒  3x^2 −(A^3 +6)x+2=0  say A^3 +6=t  x=(t/6)±(√((t^2 /(36))−(2/3)))  3(3x−1)−(A^3 +6)x^2 +2x=0  3(11x−3)=(A^3 +6){(A^3 +6)x−2}  x{(A^3 +6)^2 −33}=2(A^3 +6)−9  x=((2t−9)/(t^2 −33))  ((2t−9)/(t^2 −33))=(t/6)±(√((t^2 /(36))−(2/3)))  ⇒  ((t/6)−((2t−9)/(t^2 −33)))^2 =((t^2 −24)/(36))  ...
abc=1sayif(abc)1/3=1a+b+c=0(a1/3+b1/3+c1/3)=0(maybe)p3+Ap1=0p3=x(x1)3=A3x3x13x2+3x1=A3x3x2(A3+6)x+2=0sayA3+6=tx=t6±t236233(3x1)(A3+6)x2+2x=03(11x3)=(A3+6){(A3+6)x2}x{(A3+6)233}=2(A3+6)9x=2t9t2332t9t233=t6±t23623(t62t9t233)2=t22436
Commented by Frix last updated on 27/Mar/25
a+b+c=0 ∧ (a)^(1/3) +(b)^(1/3) +(c)^(1/3) =0 is only possible if  c=−((a)^(1/3) +(b)^(1/3) )^3   a+b−((a)^(1/3) +(b)^(1/3) )^3 =0  −3((ab))^(1/3) ((a)^(1/3) +(b)^(1/3) )=0  ⇒ a=0∨b=0∨b=−a [if we stay in R]
a+b+c=0a3+b3+c3=0isonlypossibleifc=(a3+b3)3a+b(a3+b3)3=03ab3(a3+b3)=0a=0b=0b=a[ifwestayinR]

Leave a Reply

Your email address will not be published. Required fields are marked *