Menu Close

xy-6-x-y-x-2-y-2-325-x-y-




Question Number 572 by kth last updated on 29/Jan/15
xy=6(x+y)  x^2 +y^2 =325  x=?  y=?
$${xy}=\mathrm{6}\left({x}+{y}\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{325} \\ $$$${x}=? \\ $$$${y}=? \\ $$$$ \\ $$
Answered by prakash jain last updated on 29/Jan/15
(x+y)^2 =x^2 +y^2 +2xy=325+2∙6(x+y)  ⇒(x+y)^2 −12(x+y)−325=0  ⇒(x+y)^2 −25(x+y)+13(x+y)−325=0  ⇒(x+y−25)(x+y+13)=0  x+y=25 or x+y=−13  (x−y)^2 =x^2 +y^2 −2xy=325−12(x+y)  case I: x+y=25  (x−y)^2 =325−150=25, x−y=±5  case II: x+y=−13  (x−y)^2 =325−12(−13)=325+156=481  x−y=±(√(481))  Solutions  1. x+y=25, x−y=5       x=15, y=10  2. x+y=25, x−y=−5       x=10, y=15  3. x+y=−13, x−y=(√(481))       x=((−13+(√(481)))/2), y=((−13−(√(481)))/2)  4. x+y=−13, x−y=−(√(481))       x=((−13−(√(481)))/2), y=((−13+(√(481)))/2)
$$\left({x}+{y}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy}=\mathrm{325}+\mathrm{2}\centerdot\mathrm{6}\left({x}+{y}\right) \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{12}\left({x}+{y}\right)−\mathrm{325}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{25}\left({x}+{y}\right)+\mathrm{13}\left({x}+{y}\right)−\mathrm{325}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+{y}−\mathrm{25}\right)\left({x}+{y}+\mathrm{13}\right)=\mathrm{0} \\ $$$${x}+{y}=\mathrm{25}\:\mathrm{or}\:{x}+{y}=−\mathrm{13} \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}=\mathrm{325}−\mathrm{12}\left({x}+{y}\right) \\ $$$$\mathrm{case}\:\mathrm{I}:\:{x}+{y}=\mathrm{25} \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} =\mathrm{325}−\mathrm{150}=\mathrm{25},\:{x}−{y}=\pm\mathrm{5} \\ $$$$\mathrm{case}\:\mathrm{II}:\:{x}+{y}=−\mathrm{13} \\ $$$$\left({x}−{y}\right)^{\mathrm{2}} =\mathrm{325}−\mathrm{12}\left(−\mathrm{13}\right)=\mathrm{325}+\mathrm{156}=\mathrm{481} \\ $$$${x}−{y}=\pm\sqrt{\mathrm{481}} \\ $$$$\mathrm{Solutions} \\ $$$$\mathrm{1}.\:{x}+{y}=\mathrm{25},\:{x}−{y}=\mathrm{5} \\ $$$$\:\:\:\:\:{x}=\mathrm{15},\:{y}=\mathrm{10} \\ $$$$\mathrm{2}.\:{x}+{y}=\mathrm{25},\:{x}−{y}=−\mathrm{5} \\ $$$$\:\:\:\:\:{x}=\mathrm{10},\:{y}=\mathrm{15} \\ $$$$\mathrm{3}.\:{x}+{y}=−\mathrm{13},\:{x}−{y}=\sqrt{\mathrm{481}} \\ $$$$\:\:\:\:\:{x}=\frac{−\mathrm{13}+\sqrt{\mathrm{481}}}{\mathrm{2}},\:{y}=\frac{−\mathrm{13}−\sqrt{\mathrm{481}}}{\mathrm{2}} \\ $$$$\mathrm{4}.\:{x}+{y}=−\mathrm{13},\:{x}−{y}=−\sqrt{\mathrm{481}} \\ $$$$\:\:\:\:\:{x}=\frac{−\mathrm{13}−\sqrt{\mathrm{481}}}{\mathrm{2}},\:{y}=\frac{−\mathrm{13}+\sqrt{\mathrm{481}}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *