Menu Close

Question-66109




Question Number 66109 by Rio Michael last updated on 09/Aug/19
Commented by Rio Michael last updated on 09/Aug/19
The diagram above shows a uniform semi−circular lamina of radius 2a  ,center O. The distance of the centre of mass form P, vertically above O is    A  ((6aπ−8a)/(3π))  B  ((6aπ + 8a)/(3π))  C ((8a−6aπ)/(3π))  D ((6aπ−4a)/(3π))
$${The}\:{diagram}\:{above}\:{shows}\:{a}\:{uniform}\:{semi}−{circular}\:{lamina}\:{of}\:{radius}\:\mathrm{2}{a} \\ $$$$,{center}\:{O}.\:{The}\:{distance}\:{of}\:{the}\:{centre}\:{of}\:{mass}\:{form}\:{P},\:{vertically}\:{above}\:{O}\:{is} \\ $$$$ \\ $$$${A}\:\:\frac{\mathrm{6}{a}\pi−\mathrm{8}{a}}{\mathrm{3}\pi} \\ $$$${B}\:\:\frac{\mathrm{6}{a}\pi\:+\:\mathrm{8}{a}}{\mathrm{3}\pi} \\ $$$${C}\:\frac{\mathrm{8}{a}−\mathrm{6}{a}\pi}{\mathrm{3}\pi} \\ $$$${D}\:\frac{\mathrm{6}{a}\pi−\mathrm{4}{a}}{\mathrm{3}\pi} \\ $$
Answered by mr W last updated on 09/Aug/19
R=2a  ∫ydA=2∫_0 ^(π/2) (2/3)R sin θ ((R^2 dθ)/2)=((2R^3 )/3)∫_0 ^(π/2) sin θ dθ=((2R^3 )/3)  OC=y_C =((∫ydA)/A)=((2R^3 )/(3×((πR^2 )/2)))=((4R)/(3π))=((8a)/(3π))  ⇒OP=2a−OC=((6aπ−8a)/(3π))  ⇒answer A
$${R}=\mathrm{2}{a} \\ $$$$\int{ydA}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{2}}{\mathrm{3}}{R}\:\mathrm{sin}\:\theta\:\frac{{R}^{\mathrm{2}} {d}\theta}{\mathrm{2}}=\frac{\mathrm{2}{R}^{\mathrm{3}} }{\mathrm{3}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}\:\theta\:{d}\theta=\frac{\mathrm{2}{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${OC}={y}_{{C}} =\frac{\int{ydA}}{{A}}=\frac{\mathrm{2}{R}^{\mathrm{3}} }{\mathrm{3}×\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}}=\frac{\mathrm{4}{R}}{\mathrm{3}\pi}=\frac{\mathrm{8}{a}}{\mathrm{3}\pi} \\ $$$$\Rightarrow{OP}=\mathrm{2}{a}−{OC}=\frac{\mathrm{6}{a}\pi−\mathrm{8}{a}}{\mathrm{3}\pi} \\ $$$$\Rightarrow{answer}\:{A} \\ $$
Commented by mr W last updated on 10/Aug/19

Leave a Reply

Your email address will not be published. Required fields are marked *