Menu Close

y-y-0-5-1-y-c-1-2-c-2-0-5-y-




Question Number 138564 by DomaPeti last updated on 14/Apr/21
y∙y′=0.5∙(1+y∙c_1 )^2 ∙c_2 +0.5    y=?
$${y}\centerdot{y}'=\mathrm{0}.\mathrm{5}\centerdot\left(\mathrm{1}+{y}\centerdot{c}_{\mathrm{1}} \right)^{\mathrm{2}} \centerdot{c}_{\mathrm{2}} +\mathrm{0}.\mathrm{5} \\ $$$$ \\ $$$${y}=? \\ $$
Answered by mr W last updated on 15/Apr/21
2yy′=c_2 (1+c_1 y)^2 +1=c_2 c_1 ^2 y^2 +2c_1 c_2 y+c_2 +1                              =ay^2 +by+c  ∫((2ydy)/(ay^2 +by+c))=∫dx  x=∫((2ydy)/(ay^2 +by+c))  ...
$$\mathrm{2}{yy}'={c}_{\mathrm{2}} \left(\mathrm{1}+{c}_{\mathrm{1}} {y}\right)^{\mathrm{2}} +\mathrm{1}={c}_{\mathrm{2}} {c}_{\mathrm{1}} ^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{2}{c}_{\mathrm{1}} {c}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} +\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={ay}^{\mathrm{2}} +{by}+{c} \\ $$$$\int\frac{\mathrm{2}{ydy}}{{ay}^{\mathrm{2}} +{by}+{c}}=\int{dx} \\ $$$${x}=\int\frac{\mathrm{2}{ydy}}{{ay}^{\mathrm{2}} +{by}+{c}} \\ $$$$… \\ $$
Commented by mr W last updated on 15/Apr/21
Commented by ArielVyny last updated on 15/Apr/21
for ∫(1/((dx+e)(√(ax^2 +bx+c))))dx=??
$${for}\:\int\frac{\mathrm{1}}{\left({dx}+{e}\right)\sqrt{{ax}^{\mathrm{2}} +{bx}+{c}}}{dx}=?? \\ $$$$ \\ $$
Commented by mr W last updated on 16/Apr/21
please open a new thread for your  question.
$${please}\:{open}\:{a}\:{new}\:{thread}\:{for}\:{your} \\ $$$${question}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *