Menu Close

Question-7514




Question Number 7514 by Tawakalitu. last updated on 01/Sep/16
Answered by Yozzia last updated on 01/Sep/16
sin(πcosα)=cos(πsinα).  Using sina=cos((π/2)−a), we get  cos((π/2)−πcosα)=cos(πsinα)  ⇒(π/2)−πcosα=2nπ±πsinα    (n∈Z)  ∓πsinα−πcosα=2nπ−(π/2)  ∓sinα−cosα=2n−(1/2)  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−  Suppose we write + in place of ∓.  ∴ sinα−cosα=((4n−1)/2)  (√2)sin(α−(π/4))=((4n−1)/2)  sin(α−(π/4))=((4n−1)/(2(√2)))  Since ∣sin(α−(π/4))∣≤1  ⇒∣((4n−1)/(2(√2)))∣≤1⇒∣4n−1∣≤2(√2)<4  ⇒−4<4n−1<4  −3<4n<5  −(3/4)<n<(5/4)  for n∈Z⇒n=0 or 1.  For n=0,  sin(α−(π/4))=((−1)/(2(√2)))  ⇒sin^2 (α−(π/4))=(1/8)  ⇒((1−cos(2α−(π/2)))/2)=(1/8)  ⇒cos(−(2α−(π/2)))=(3/4)  ⇒sin2α=(3/4)  ⇒α=(1/2)sin^(−1) (3/4)  Suppose n=1. ∴sin(α−0.25π)=(3/(2(√2)))  But, sin^2 (α−0.25π)=(9/8)>1.  Hence, n≠1.  −−−−−−−−−−−−−−−−−−−−−−−−−  Suppose we write − in place of ∓.   We must have n=0.  ∴ −sinα−cosα=((−1)/2)  (√2)sin(α+(π/4))=(1/2)  ⇒sin^2 (α+(π/4))=(1/8)  ⇒((1−cos(2α+π/2))/2)=(1/8)  ∴ cos(2α+(π/2))=(3/4)  −sin2α=(3/4)  ⇒α=((−1)/2)sin^(−1) (3/4)  −−−−−−−−−−−−−−−−−−−−−  ∴ α=±(1/2)sin^(−1) (3/4) if sin(πcosα)=cos(πsinα).  Generally, α=2nπ±(1/2)sin^(−1) (3/4) since  sinu=sin(u+2nπ) and cosk=cos(k+2nπ)   for any u,k∈R.
$${sin}\left(\pi{cos}\alpha\right)={cos}\left(\pi{sin}\alpha\right). \\ $$$${Using}\:{sina}={cos}\left(\frac{\pi}{\mathrm{2}}−{a}\right),\:{we}\:{get} \\ $$$${cos}\left(\frac{\pi}{\mathrm{2}}−\pi{cos}\alpha\right)={cos}\left(\pi{sin}\alpha\right) \\ $$$$\Rightarrow\frac{\pi}{\mathrm{2}}−\pi{cos}\alpha=\mathrm{2}{n}\pi\pm\pi{sin}\alpha\:\:\:\:\left({n}\in\mathbb{Z}\right) \\ $$$$\mp\pi{sin}\alpha−\pi{cos}\alpha=\mathrm{2}{n}\pi−\frac{\pi}{\mathrm{2}} \\ $$$$\mp{sin}\alpha−{cos}\alpha=\mathrm{2}{n}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{we}\:{write}\:+\:{in}\:{place}\:{of}\:\mp. \\ $$$$\therefore\:{sin}\alpha−{cos}\alpha=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}{sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}} \\ $$$${sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${Since}\:\mid{sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)\mid\leqslant\mathrm{1} \\ $$$$\Rightarrow\mid\frac{\mathrm{4}{n}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mid\leqslant\mathrm{1}\Rightarrow\mid\mathrm{4}{n}−\mathrm{1}\mid\leqslant\mathrm{2}\sqrt{\mathrm{2}}<\mathrm{4} \\ $$$$\Rightarrow−\mathrm{4}<\mathrm{4}{n}−\mathrm{1}<\mathrm{4} \\ $$$$−\mathrm{3}<\mathrm{4}{n}<\mathrm{5} \\ $$$$−\frac{\mathrm{3}}{\mathrm{4}}<{n}<\frac{\mathrm{5}}{\mathrm{4}}\:\:{for}\:{n}\in\mathbb{Z}\Rightarrow{n}=\mathrm{0}\:{or}\:\mathrm{1}. \\ $$$${For}\:{n}=\mathrm{0},\:\:{sin}\left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow{sin}^{\mathrm{2}} \left(\alpha−\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{2}\alpha−\frac{\pi}{\mathrm{2}}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow{cos}\left(−\left(\mathrm{2}\alpha−\frac{\pi}{\mathrm{2}}\right)\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow{sin}\mathrm{2}\alpha=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\alpha=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$${Suppose}\:{n}=\mathrm{1}.\:\therefore{sin}\left(\alpha−\mathrm{0}.\mathrm{25}\pi\right)=\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${But},\:{sin}^{\mathrm{2}} \left(\alpha−\mathrm{0}.\mathrm{25}\pi\right)=\frac{\mathrm{9}}{\mathrm{8}}>\mathrm{1}. \\ $$$${Hence},\:{n}\neq\mathrm{1}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{we}\:{write}\:−\:{in}\:{place}\:{of}\:\mp.\: \\ $$$${We}\:{must}\:{have}\:{n}=\mathrm{0}. \\ $$$$\therefore\:−{sin}\alpha−{cos}\alpha=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}{sin}\left(\alpha+\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{sin}^{\mathrm{2}} \left(\alpha+\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\Rightarrow\frac{\mathrm{1}−{cos}\left(\mathrm{2}\alpha+\pi/\mathrm{2}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\therefore\:{cos}\left(\mathrm{2}\alpha+\frac{\pi}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$−{sin}\mathrm{2}\alpha=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\alpha=\frac{−\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$$\therefore\:\alpha=\pm\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:{if}\:{sin}\left(\pi{cos}\alpha\right)={cos}\left(\pi{sin}\alpha\right). \\ $$$${Generally},\:\alpha=\mathrm{2}{n}\pi\pm\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:{since} \\ $$$${sinu}={sin}\left({u}+\mathrm{2}{n}\pi\right)\:{and}\:{cosk}={cos}\left({k}+\mathrm{2}{n}\pi\right)\: \\ $$$${for}\:{any}\:{u},{k}\in\mathbb{R}. \\ $$
Commented by Tawakalitu. last updated on 01/Sep/16
Wow, thanks so much.
$${Wow},\:{thanks}\:{so}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *