Menu Close

Is-there-any-formula-to-find-sum-of-1-n-2-n-4-n-6-n-8-n-2k-where-n-k-Z-




Question Number 66126 by Joel122 last updated on 09/Aug/19
Is there any formula to find sum of  1 + n^2  + n^4  + n^6  + n^8  + ... + n^(2k)  + ...  where n,k ∈ Z^+
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{find}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{1}\:+\:{n}^{\mathrm{2}} \:+\:{n}^{\mathrm{4}} \:+\:{n}^{\mathrm{6}} \:+\:{n}^{\mathrm{8}} \:+\:…\:+\:{n}^{\mathrm{2}{k}} \:+\:… \\ $$$$\mathrm{where}\:{n},{k}\:\in\:\mathbb{Z}^{+} \: \\ $$
Answered by mr W last updated on 09/Aug/19
G.P. with  a_0 =1  q=n^2   a_k =(n^2 )^k   S_k =((n^(2(k+1)) −1)/(n^2 −1)) for n≠1  S_k =k for n=1    lim_(k→∞) S_k =∞ since n≥1
$${G}.{P}.\:{with} \\ $$$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${q}={n}^{\mathrm{2}} \\ $$$${a}_{{k}} =\left({n}^{\mathrm{2}} \right)^{{k}} \\ $$$${S}_{{k}} =\frac{{n}^{\mathrm{2}\left({k}+\mathrm{1}\right)} −\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{1}}\:{for}\:{n}\neq\mathrm{1} \\ $$$${S}_{{k}} ={k}\:{for}\:{n}=\mathrm{1} \\ $$$$ \\ $$$$\underset{{k}\rightarrow\infty} {\mathrm{lim}}{S}_{{k}} =\infty\:{since}\:{n}\geqslant\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *