Menu Close

solve-x-2-3x-1-x-2-x-1-lt-3-




Question Number 7598 by Rohit last updated on 05/Sep/16
solve ∣((x^2 −3x−1)/(x^2 +x+1))∣<3
$${solve}\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\mid<\mathrm{3} \\ $$
Answered by Rasheed Soomro last updated on 06/Sep/16
∣((x^2 −3x−1)/(x^2 +x+1))∣<3  ±((x^2 −3x−1)/(x^2 +x+1))<3  ((x^2 −3x−1)/(x^2 +x+1))<3   ∣   −((x^2 −3x−1)/(x^2 +x+1))<3  ((x^2 −3x−1)/(x^2 +x+1))<3   ∣   ((x^2 −3x−1)/(x^2 +x+1))>−3     x^2 +x+1>0  [See the reason in the comment by Sandy below  or see the explanation for this in the answer by Yozzia.]  x^2 −3x−1<3x^2 +3x+3  ∣  x^2 −3x−1>−3x^2 −3x−3  2x^2 +6x+4>0        ∣     4x^2 +2>0  x^2 +3x+2>0         ∣      2x^2 +1>0  (x+2)(x+1)>0   ∣      x^2 >−(1/2)⇒x^2 >0⇒ x>0 ∨ x<0  (x+2>0 ∧ x+1>0 ) or (x+2<0 ∧ x+1<0 )  x>−2 ∧ x>−1           or x<−2 ∧ x<−1  x>−1                           or  x<−2
$$\mid\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\mid<\mathrm{3} \\ $$$$\pm\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}<\mathrm{3} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}<\mathrm{3}\:\:\:\mid\:\:\:−\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}<\mathrm{3} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}<\mathrm{3}\:\:\:\mid\:\:\:\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}>−\mathrm{3} \\ $$$$ \\ $$$$\:{x}^{\mathrm{2}} +{x}+\mathrm{1}>\mathrm{0}\:\:\left[{See}\:{the}\:{reason}\:{in}\:{the}\:{comment}\:{by}\:{Sandy}\:{below}\right. \\ $$$$\left.{or}\:{see}\:{the}\:{explanation}\:{for}\:{this}\:{in}\:{the}\:{answer}\:{by}\:{Yozzia}.\right] \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}<\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{3}\:\:\mid\:\:{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}>−\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{3} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{4}>\mathrm{0}\:\:\:\:\:\:\:\:\mid\:\:\:\:\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}>\mathrm{0}\:\:\:\:\:\:\:\:\:\mid\:\:\:\:\:\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}>\mathrm{0} \\ $$$$\left({x}+\mathrm{2}\right)\left({x}+\mathrm{1}\right)>\mathrm{0}\:\:\:\mid\:\:\:\:\:\:{x}^{\mathrm{2}} >−\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow{x}^{\mathrm{2}} >\mathrm{0}\Rightarrow\:{x}>\mathrm{0}\:\vee\:{x}<\mathrm{0} \\ $$$$\left({x}+\mathrm{2}>\mathrm{0}\:\wedge\:{x}+\mathrm{1}>\mathrm{0}\:\right)\:{or}\:\left({x}+\mathrm{2}<\mathrm{0}\:\wedge\:{x}+\mathrm{1}<\mathrm{0}\:\right) \\ $$$${x}>−\mathrm{2}\:\wedge\:{x}>−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:{or}\:{x}<−\mathrm{2}\:\wedge\:{x}<−\mathrm{1} \\ $$$${x}>−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\:{x}<−\mathrm{2} \\ $$$$ \\ $$
Commented by sandy_suhendra last updated on 05/Sep/16
(x^2 +x+1) is always positive,   because a>0 and D=b^2 −4ac=1^2 −4.1.1=−3 ⇒D<0
$$\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{is}\:{always}\:{positive},\: \\ $$$${because}\:{a}>\mathrm{0}\:{and}\:{D}={b}^{\mathrm{2}} −\mathrm{4}{ac}=\mathrm{1}^{\mathrm{2}} −\mathrm{4}.\mathrm{1}.\mathrm{1}=−\mathrm{3}\:\Rightarrow{D}<\mathrm{0} \\ $$
Commented by Rasheed Soomro last updated on 05/Sep/16
TH_n ^α KS!
$$\mathcal{TH}_{{n}} ^{\alpha} \mathcal{KS}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *