Question Number 226983 by hardmath last updated on 24/Dec/25

Answered by MrAjder last updated on 01/Jan/26

$$ \\ $$$${S}=\left\{\left({a},{b},{c}\right)\in\mathbb{R}_{+} ^{\mathrm{3}} :{a}+{b}+{c}=\mathrm{3}\right\},{F}\left({a},{b},{c}\right)=\underset{{cyc}} {\sum}\frac{{a}}{{b}^{\mathrm{2}} +{c}} \\ $$$$\mathcal{L}\left({a},{b},{c},\lambda\right)={F}\left({a},{b},{c}\right)+\lambda\left({a}+{b}+{c}−\mathrm{3}\right) \\ $$$$\frac{\partial\mathcal{L}}{\partial{a}}=\frac{\mathrm{1}}{{b}^{\mathrm{2}} +{c}}−\frac{{b}}{\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }−\frac{\mathrm{2}{ac}}{\left({a}^{\mathrm{2}} +{b}\right)^{\mathrm{2}} }+\lambda=\mathrm{0} \\ $$$$\frac{\partial\mathcal{L}}{\partial{b}}=\frac{\mathrm{1}}{{c}^{\mathrm{2}} +{a}}−\frac{{c}}{\left({a}^{\mathrm{2}} +{b}\right)^{\mathrm{2}} }−\frac{\mathrm{2}{ba}}{\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)}+\lambda=\mathrm{0} \\ $$$$\frac{\partial\mathcal{L}}{\partial{c}}=\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}}−\frac{{a}}{\left({b}^{\mathrm{2}} +{c}\right)^{\mathrm{2}} }−\frac{\mathrm{2}{ab}}{\left({c}^{\mathrm{2}} +{a}\right)^{\mathrm{2}} }+\lambda=\mathrm{0} \\ $$$${a}={b}={c},{a}+{b}+{c}=\mathrm{3}\Rightarrow{a}={b}={c}=\mathrm{1} \\ $$$$\lambda=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${H}_{\mathcal{L}} \left(\mathrm{1},\mathrm{1},\mathrm{1}\right)=\begin{pmatrix}{\frac{\partial^{\mathrm{2}} {F}}{\partial{a}^{\mathrm{2}} }}&{\frac{\partial^{\mathrm{2}} {F}}{\partial{a}\partial{b}}}&{\frac{\partial^{\mathrm{2}} {F}}{\partial{a}\partial{c}}}\\{\frac{\partial^{\mathrm{2}} {F}}{\partial{b}\partial{a}}}&{\frac{\partial^{\mathrm{2}} {F}}{\partial{b}^{\mathrm{2}} }}&{\frac{\partial^{\mathrm{2}} {F}}{\partial{b}\partial{c}}}\\{\frac{\partial^{\mathrm{2}} {F}}{\partial{c}\partial{b}}}&{\frac{\partial^{\mathrm{2}} {F}}{\partial{c}\partial{b}}}&{\frac{\partial^{\mathrm{2}} {F}}{\partial{c}^{\mathrm{2}} }}\end{pmatrix}_{\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)} \\ $$$$\frac{\partial^{\mathrm{2}} {F}}{\partial{a}^{\mathrm{2}} }\mid_{\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)} =\frac{\mathrm{3}}{\mathrm{4}},\frac{\partial^{\mathrm{2}} {F}}{\partial{a}\partial{b}}\mid_{\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${H}=\begin{pmatrix}{\frac{\mathrm{3}}{\mathrm{4}}}&{−\frac{\mathrm{1}}{\mathrm{4}}}&{−\frac{\mathrm{1}}{\mathrm{4}}}\\{−\frac{\mathrm{1}}{\mathrm{4}}}&{\frac{\mathrm{3}}{\mathrm{4}}}&{−\frac{\mathrm{1}}{\mathrm{4}}}\\{−\frac{\mathrm{1}}{\mathrm{4}}}&{−\frac{\mathrm{1}}{\mathrm{4}}}&{\frac{\mathrm{3}}{\mathrm{4}}}\end{pmatrix} \\ $$$$\mathrm{det}\begin{pmatrix}{\frac{\mathrm{3}}{\mathrm{4}}−\mu}&{−\frac{\mathrm{1}}{\mathrm{4}}}&{−\frac{\mathrm{1}}{\mathrm{4}}}\\{−\frac{\mathrm{1}}{\mathrm{4}}}&{\frac{\mathrm{3}}{\mathrm{4}}−\mu}&{−\frac{\mathrm{1}}{\mathrm{4}}}\\{−\frac{\mathrm{1}}{\mathrm{4}}}&{−\frac{\mathrm{1}}{\mathrm{4}}}&{\frac{\mathrm{3}}{\mathrm{4}}−\mu}\end{pmatrix}=\mathrm{0}\Rightarrow\left(\mu−\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mu−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\sigma\left({H}\right)=\left\{\frac{\mathrm{1}}{\mathrm{4}}\mathrm{1},\mathrm{1}\right\}\subset\mathbb{R}^{+} \\ $$$$\therefore{H}\succ\mathrm{0}\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\mathrm{Is}\:\mathrm{a}\:\mathrm{strictly}\:\mathrm{local}\:\mathrm{minimum}\:\mathrm{point} \\ $$$$\underset{{S}} {\mathrm{min}}{F}={F}\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\therefore\forall\left({a},{b},{c}\right)\in{S},\underset{{cyc}} {\sum}\frac{{a}}{{b}^{\mathrm{2}} −{c}}\geq\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by hardmath last updated on 01/Jan/26

$$\mathrm{Cooll}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$