Menu Close

A-Segment-of-a-sphere-has-radius-r-and-maximum-height-h-Prove-that-its-volume-h-6-h-2-3r-2-




Question Number 227054 by Spillover last updated on 28/Dec/25
A Segment of a sphere has radius r  and maximum height h.Prove that  its volume ((๐›‘h)/6)(h^2 +3r^2 )
$${A}\:{Segment}\:{of}\:{a}\:{sphere}\:{has}\:{radius}\:{r} \\ $$$${and}\:{maximum}\:{height}\:{h}.{Prove}\:{that} \\ $$$${its}\:{volume}\:\frac{\boldsymbol{\pi{h}}}{\mathrm{6}}\left(\boldsymbol{{h}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{{r}}^{\mathrm{2}} \right) \\ $$
Answered by fantastic2 last updated on 29/Dec/25
Commented by fantastic2 last updated on 29/Dec/25
AC=h  โˆตAO=Rโˆ’h  (Rโˆ’h)^2 +r^2 =R^2 ...i  โ‡’2Rh=h^2 +r^2   โ‡’R=((h^2 +r^2 )/(2h))  AB=โ„“  โˆดOB=Rโˆ’h+โ„“  (Rโˆ’h+โ„“)^2 +x^2 =R^2   โˆดR^2 +h^2 +โ„“^2 โˆ’2Rh+2Rโ„“โˆ’2hโ„“+x^2 =R^2 +h^2 โˆ’2Rh+r^2 [from i]  โ‡’x^2 =r^2 โˆ’โ„“^2 +2โ„“(hโˆ’R)  dV=ฯ€x^2 dโ„“  โˆดV=โˆซ_0 ^h ฯ€(r^2 โˆ’โ„“^2 +2โ„“(hโˆ’R))dโ„“  =ฯ€(r^2 hโˆ’(h^3 /3)+h^3 โˆ’Rh^2 )  =ฯ€h(r^2 โˆ’(h^2 /3)+h^2 โˆ’((h^2 +r^2 )/2))  =((ฯ€h)/6)(6r^2 โˆ’2h^2 +6h^2 โˆ’3h^2 โˆ’3r^2 )  =(1/6)ฯ€h(h^2 +3r^2 )
$${AC}={h} \\ $$$$\because{AO}={R}โˆ’{h} \\ $$$$\left({R}โˆ’{h}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} ={R}^{\mathrm{2}} …{i} \\ $$$$\Rightarrow\mathrm{2}{Rh}={h}^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$\Rightarrow{R}=\frac{{h}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{2}{h}} \\ $$$${AB}=\ell \\ $$$$\therefore{OB}={R}โˆ’{h}+\ell \\ $$$$\left({R}โˆ’{h}+\ell\right)^{\mathrm{2}} +{x}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\therefore{R}^{\mathrm{2}} +{h}^{\mathrm{2}} +\ell^{\mathrm{2}} โˆ’\mathrm{2}{Rh}+\mathrm{2}{R}\ellโˆ’\mathrm{2}{h}\ell+{x}^{\mathrm{2}} ={R}^{\mathrm{2}} +{h}^{\mathrm{2}} โˆ’\mathrm{2}{Rh}+{r}^{\mathrm{2}} \left[{from}\:{i}\right] \\ $$$$\Rightarrow{x}^{\mathrm{2}} ={r}^{\mathrm{2}} โˆ’\ell^{\mathrm{2}} +\mathrm{2}\ell\left({h}โˆ’{R}\right) \\ $$$${dV}=\pi{x}^{\mathrm{2}} {d}\ell \\ $$$$\therefore{V}=\int_{\mathrm{0}} ^{{h}} \pi\left({r}^{\mathrm{2}} โˆ’\ell^{\mathrm{2}} +\mathrm{2}\ell\left({h}โˆ’{R}\right)\right){d}\ell \\ $$$$=\pi\left({r}^{\mathrm{2}} {h}โˆ’\frac{{h}^{\mathrm{3}} }{\mathrm{3}}+{h}^{\mathrm{3}} โˆ’{Rh}^{\mathrm{2}} \right) \\ $$$$=\pi{h}\left({r}^{\mathrm{2}} โˆ’\frac{{h}^{\mathrm{2}} }{\mathrm{3}}+{h}^{\mathrm{2}} โˆ’\frac{{h}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$=\frac{\pi{h}}{\mathrm{6}}\left(\mathrm{6}{r}^{\mathrm{2}} โˆ’\mathrm{2}{h}^{\mathrm{2}} +\mathrm{6}{h}^{\mathrm{2}} โˆ’\mathrm{3}{h}^{\mathrm{2}} โˆ’\mathrm{3}{r}^{\mathrm{2}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{6}}\pi{h}\left({h}^{\mathrm{2}} +\mathrm{3}{r}^{\mathrm{2}} \right) \\ $$$$ \\ $$
Commented by Spillover last updated on 29/Dec/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *