Menu Close

Does-condition-sup-x-R-f-1-x-lt-Gaurantee-f-x-is-Bounded-in-R-




Question Number 227274 by Lara2440 last updated on 11/Jan/26
Does condition  sup_(x∈R)  ∣∣f^((1)) (x)∣∣<∞ ,  Gaurantee f(x) is Bounded in R?
$$\mathrm{Does}\:\mathrm{condition} \\ $$$$\underset{{x}\in\mathbb{R}} {\mathrm{sup}}\:\mid\mid{f}^{\left(\mathrm{1}\right)} \left({x}\right)\mid\mid<\infty\:,\:\:\mathrm{Gaurantee}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{Bounded}\:\mathrm{in}\:\mathbb{R}? \\ $$
Answered by peace2 last updated on 12/Jan/26
non f(x)=x  f^1 (x)=1  supf^1 (x)=1<∞  f(x)=x noy bounded
$${non}\:{f}\left({x}\right)={x} \\ $$$${f}^{\mathrm{1}} \left({x}\right)=\mathrm{1} \\ $$$${supf}^{\mathrm{1}} \left({x}\right)=\mathrm{1}<\infty \\ $$$${f}\left({x}\right)={x}\:{noy}\:{bounded} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *