Menu Close

Question-138896




Question Number 138896 by ajfour last updated on 19/Apr/21
Answered by ajfour last updated on 20/Apr/21
Let A be origin and x axis  vertically down towards center  of cube.  −dg_x =(((Gdm)x)/((x^2 +y^2 +z^2 )^(3/2) ))  −dg_x =(((ρG)xdxdydz)/((x^2 +y^2 +z^2 )^(3/2) ))  x∈[0,2a]  ;  y∈[−a,a] ;  z∈[−a,a]  −(g_x /(ρG))=∫dz∫dy{(1/( (√(y^2 +z^2 ))))−(1/( (√(4a^2 +y^2 +z^2 ))))}  =∫_(−a) ^(  a) {ln (((a+(√(a^2 +z^2 )))/(−a+(√(a^2 +z^2 )))))−ln( ((a+(√(5a^2 +z^2 )))/(−a+(√(5a^2 +z^2 )))))}dz  ρ=(M/(8a^3 ))   &   g_0 =−((GM)/R^2 )=−((ρG(8a^3 ))/((((6a^3 )/π))^(2/3) ))   as    (4/3)πR^3 =8a^3    ⇒     g_0 =−((ρG(8a))/(((6/π))^(2/3) ))  ⇒ −ρG=(g_0 /(8a))((6/π))^(2/3)   −ρG=((3g_0 )/(4πR))    as  a=R((π/6))^(1/3)   ⇒  ((g_x (4πR))/(3g_0 ))=∫_(−a) ^(  a) {ln (((a+(√(a^2 +z^2 )))/(−a+(√(a^2 +z^2 )))))−ln( ((a+(√(5a^2 +z^2 )))/(−a+(√(5a^2 +z^2 )))))}dz  let   (z/a)=t  ⇒  dz=adt  for z=a,  t=1  &  z=−a, t=−1  so  (g_x /g_0 )=((3a)/(4πR))∫_(−1) ^( 1) {ln (((1+(√(1+t^2 )))/(−1+(√(1+t^2 )))))−ln (((1+(√(5+t^2 )))/(−1+(√(5+t^2 )))))}dt  (g_x /g_0 )=(1/8)((6/π))^(2/3) ( I_0  )
$${Let}\:{A}\:{be}\:{origin}\:{and}\:{x}\:{axis} \\ $$$${vertically}\:{down}\:{towards}\:{center} \\ $$$${of}\:{cube}. \\ $$$$−{dg}_{{x}} =\frac{\left({Gdm}\right){x}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$$−{dg}_{{x}} =\frac{\left(\rho{G}\right){xdxdydz}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} } \\ $$$${x}\in\left[\mathrm{0},\mathrm{2}{a}\right]\:\:;\:\:{y}\in\left[−{a},{a}\right]\:;\:\:{z}\in\left[−{a},{a}\right] \\ $$$$−\frac{{g}_{{x}} }{\rho{G}}=\int{dz}\int{dy}\left\{\frac{\mathrm{1}}{\:\sqrt{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}{a}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right\} \\ $$$$=\int_{−{a}} ^{\:\:{a}} \left\{\mathrm{ln}\:\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)−\mathrm{ln}\left(\:\frac{{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)\right\}{dz} \\ $$$$\rho=\frac{{M}}{\mathrm{8}{a}^{\mathrm{3}} }\:\:\:\&\:\:\:{g}_{\mathrm{0}} =−\frac{{GM}}{{R}^{\mathrm{2}} }=−\frac{\rho{G}\left(\mathrm{8}{a}^{\mathrm{3}} \right)}{\left(\frac{\mathrm{6}{a}^{\mathrm{3}} }{\pi}\right)^{\mathrm{2}/\mathrm{3}} }\: \\ $$$${as}\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\pi{R}^{\mathrm{3}} =\mathrm{8}{a}^{\mathrm{3}} \:\:\:\Rightarrow \\ $$$$\:\:\:{g}_{\mathrm{0}} =−\frac{\rho{G}\left(\mathrm{8}{a}\right)}{\left(\frac{\mathrm{6}}{\pi}\right)^{\mathrm{2}/\mathrm{3}} }\:\:\Rightarrow\:−\rho{G}=\frac{{g}_{\mathrm{0}} }{\mathrm{8}{a}}\left(\frac{\mathrm{6}}{\pi}\right)^{\mathrm{2}/\mathrm{3}} \\ $$$$−\rho{G}=\frac{\mathrm{3}{g}_{\mathrm{0}} }{\mathrm{4}\pi{R}}\:\:\:\:{as}\:\:{a}={R}\left(\frac{\pi}{\mathrm{6}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\Rightarrow\:\:\frac{{g}_{{x}} \left(\mathrm{4}\pi{R}\right)}{\mathrm{3}{g}_{\mathrm{0}} }=\int_{−{a}} ^{\:\:{a}} \left\{\mathrm{ln}\:\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)−\mathrm{ln}\left(\:\frac{{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}{−{a}+\sqrt{\mathrm{5}{a}^{\mathrm{2}} +{z}^{\mathrm{2}} }}\right)\right\}{dz} \\ $$$${let}\:\:\:\frac{{z}}{{a}}={t}\:\:\Rightarrow\:\:{dz}={adt} \\ $$$${for}\:{z}={a},\:\:{t}=\mathrm{1}\:\:\&\:\:{z}=−{a},\:{t}=−\mathrm{1} \\ $$$${so} \\ $$$$\frac{{g}_{{x}} }{{g}_{\mathrm{0}} }=\frac{\mathrm{3}{a}}{\mathrm{4}\pi{R}}\int_{−\mathrm{1}} ^{\:\mathrm{1}} \left\{\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)−\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}\right)\right\}{dt} \\ $$$$\frac{{g}_{{x}} }{{g}_{\mathrm{0}} }=\frac{\mathrm{1}}{\mathrm{8}}\left(\frac{\mathrm{6}}{\pi}\right)^{\mathrm{2}/\mathrm{3}} \left(\:{I}_{\mathrm{0}} \:\right) \\ $$
Commented by mr W last updated on 20/Apr/21
I_0 =∫_(−1) ^( 1) {ln (((1+(√(1+t^2 )))/(−1+(√(1+t^2 )))))−ln (((1+(√(5+t^2 )))/(−1+(√(5+t^2 )))))}dt       ≈5.193793  g_x =ρGI_0 a  g_0 =((GM)/R^2 )=(G/R^2 )×((ρ4πR^3 )/3)=((4ρGπR)/3)  8a^3 =((4πR^3 )/3) ⇒(a/R)=((π/6))^(1/3)   (g_x /g_0 )=((3I_0 a)/(4πR))=(I_0 /8)×((6a)/(πR))=(I_0 /8)((6/π))^(2/3) ≈0.999376
$${I}_{\mathrm{0}} =\int_{−\mathrm{1}} ^{\:\mathrm{1}} \left\{\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)−\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}{−\mathrm{1}+\sqrt{\mathrm{5}+{t}^{\mathrm{2}} }}\right)\right\}{dt} \\ $$$$\:\:\:\:\:\approx\mathrm{5}.\mathrm{193793} \\ $$$${g}_{{x}} =\rho{GI}_{\mathrm{0}} {a} \\ $$$${g}_{\mathrm{0}} =\frac{{GM}}{{R}^{\mathrm{2}} }=\frac{{G}}{{R}^{\mathrm{2}} }×\frac{\rho\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}=\frac{\mathrm{4}\rho{G}\pi{R}}{\mathrm{3}} \\ $$$$\mathrm{8}{a}^{\mathrm{3}} =\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}\:\Rightarrow\frac{{a}}{{R}}=\left(\frac{\pi}{\mathrm{6}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\frac{{g}_{{x}} }{{g}_{\mathrm{0}} }=\frac{\mathrm{3}{I}_{\mathrm{0}} {a}}{\mathrm{4}\pi{R}}=\frac{{I}_{\mathrm{0}} }{\mathrm{8}}×\frac{\mathrm{6}{a}}{\pi{R}}=\frac{{I}_{\mathrm{0}} }{\mathrm{8}}\left(\frac{\mathrm{6}}{\pi}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} \approx\mathrm{0}.\mathrm{999376} \\ $$
Commented by ajfour last updated on 20/Apr/21
If it is correct, it′s rather strange..  ⇒ I_0 =8((g_(cube) /g_(sphere) ))_A ((π/6))^(2/3)
$${If}\:{it}\:{is}\:{correct},\:{it}'{s}\:{rather}\:{strange}.. \\ $$$$\Rightarrow\:{I}_{\mathrm{0}} =\mathrm{8}\left(\frac{{g}_{{cube}} }{{g}_{{sphere}} }\right)_{{A}} \left(\frac{\pi}{\mathrm{6}}\right)^{\mathrm{2}/\mathrm{3}} \\ $$
Commented by mr W last updated on 20/Apr/21
i see this result as understandable.  the point A is closer to the center of  earth, so g_x  should be larger than g_0   at the surface of spherical earth. but  the mass of the cube is less   concentrated as the sphere, so g_x    should be smaller than g_0 . both effects  abrogate each other, so g_x  is almost  the same as g_0  at point A.
$${i}\:{see}\:{this}\:{result}\:{as}\:{understandable}. \\ $$$${the}\:{point}\:{A}\:{is}\:{closer}\:{to}\:{the}\:{center}\:{of} \\ $$$${earth},\:{so}\:{g}_{{x}} \:{should}\:{be}\:{larger}\:{than}\:{g}_{\mathrm{0}} \\ $$$${at}\:{the}\:{surface}\:{of}\:{spherical}\:{earth}.\:{but} \\ $$$${the}\:{mass}\:{of}\:{the}\:{cube}\:{is}\:{less}\: \\ $$$${concentrated}\:{as}\:{the}\:{sphere},\:{so}\:{g}_{{x}} \: \\ $$$${should}\:{be}\:{smaller}\:{than}\:{g}_{\mathrm{0}} .\:{both}\:{effects} \\ $$$${abrogate}\:{each}\:{other},\:{so}\:{g}_{{x}} \:{is}\:{almost} \\ $$$${the}\:{same}\:{as}\:{g}_{\mathrm{0}} \:{at}\:{point}\:{A}. \\ $$
Commented by mr W last updated on 20/Apr/21
Commented by mr W last updated on 20/Apr/21
Commented by mr W last updated on 20/Apr/21
https://possiblywrong.wordpress.com/2011/09/09/if-the-earth-were-a-cube/

Leave a Reply

Your email address will not be published. Required fields are marked *