Menu Close

Question-66163




Question Number 66163 by aliesam last updated on 09/Aug/19
Answered by mr W last updated on 09/Aug/19
y=x^x^x^(....)     y=x^y   ln y=y ln x  (1/y)×(dy/dx)=(y/x)+ln x (dy/dx)  (1−y ln x)(dy/dx)=(y^2 /x)  ⇒(dy/dx)=(y^2 /(x(1−y ln x)))  ⇒(dy/dx)=(((x^x^x^(...)   )^2 )/(x[1−(x^x^x^(...)   ) ln x]))
$${y}={x}^{{x}^{{x}^{….} } } \\ $$$${y}={x}^{{y}} \\ $$$$\mathrm{ln}\:{y}={y}\:\mathrm{ln}\:{x} \\ $$$$\frac{\mathrm{1}}{{y}}×\frac{{dy}}{{dx}}=\frac{{y}}{{x}}+\mathrm{ln}\:{x}\:\frac{{dy}}{{dx}} \\ $$$$\left(\mathrm{1}−{y}\:\mathrm{ln}\:{x}\right)\frac{{dy}}{{dx}}=\frac{{y}^{\mathrm{2}} }{{x}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{{y}^{\mathrm{2}} }{{x}\left(\mathrm{1}−{y}\:\mathrm{ln}\:{x}\right)} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{\left({x}^{{x}^{{x}^{…} } } \right)^{\mathrm{2}} }{{x}\left[\mathrm{1}−\left({x}^{{x}^{{x}^{…} } } \right)\:\mathrm{ln}\:{x}\right]} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *