Menu Close

the-temperature-of-a-fluid-in-heating-unit-of-a-plant-is-given-by-T-x-y-z-100-z-3-10-x-1-2-y-2-2-find-the-minimum-and-maximum-temperatures-if-the-heat-exchanging-components-have-the-s




Question Number 131717 by LYKA last updated on 07/Feb/21
the temperature of a fluid  in heating unit of a plant is given by  T(x.y.z)= ((100(z−3))/(10−(x−1)^2 +(y−2)^2 ))  find the minimum and maximum   temperatures if the heat exchanging   components have the shapes   z=(x^2 /4)−(y^2 /(9 )) and   (x−1)^2 +(y−1)^2 +(z−3)^2 =36
$${the}\:{temperature}\:{of}\:{a}\:{fluid} \\ $$$${in}\:{heating}\:{unit}\:{of}\:{a}\:{plant}\:{is}\:{given}\:{by} \\ $$$${T}\left({x}.{y}.{z}\right)=\:\frac{\mathrm{100}\left({z}−\mathrm{3}\right)}{\mathrm{10}−\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} } \\ $$$${find}\:{the}\:{minimum}\:{and}\:{maximum}\: \\ $$$${temperatures}\:{if}\:{the}\:{heat}\:{exchanging}\: \\ $$$${components}\:{have}\:{the}\:{shapes}\: \\ $$$${z}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}−\frac{{y}^{\mathrm{2}} }{\mathrm{9}\:}\:{and}\: \\ $$$$\left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{2}} +\left(\boldsymbol{{y}}−\mathrm{1}\right)^{\mathrm{2}} +\left({z}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{36} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *