Menu Close

calculate-the-k-th-order-Taylor-polynomials-T-p-k-f-for-the-following-f-x-e-x-1-x-for-p-1-and-k-5-f-x-y-4sin-x-2-y-for-p-0-0-and-k-4-f-x-y-x-3-2xy-e-xy-for-p-1-1-and-k




Question Number 131735 by LYKA last updated on 07/Feb/21
calculate the k-th order Taylor  polynomials T_p ^k f for the following    f(x)=(e^(−x) /(1+x))   for p=−1 and k=5    f(x.y)= 4sin(x^2 +y) for p=(0,0) and  k=4    f(x.y)= (x^3 −2xy)e^(xy)   for p=(1,1)   and k=3    f(x.y.z)= x^3 −2x^2 y+yz−z^(4 )   for  p=(−1,0,1)  and  k=2    f(x.y.z)= e^z In(xy+z) for   p=(1,2,0)  and k=3
$${calculate}\:{the}\:{k}-{th}\:{order}\:{Taylor} \\ $$$${polynomials}\:{T}_{{p}} ^{{k}} {f}\:{for}\:{the}\:{following} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{{e}^{−{x}} }{\mathrm{1}+{x}}\:\:\:{for}\:{p}=−\mathrm{1}\:{and}\:{k}=\mathrm{5} \\ $$$$ \\ $$$${f}\left({x}.{y}\right)=\:\mathrm{4}{sin}\left({x}^{\mathrm{2}} +{y}\right)\:{for}\:{p}=\left(\mathrm{0},\mathrm{0}\right)\:{and} \\ $$$${k}=\mathrm{4} \\ $$$$ \\ $$$${f}\left({x}.{y}\right)=\:\left({x}^{\mathrm{3}} −\mathrm{2}{xy}\right){e}^{{xy}} \:\:{for}\:{p}=\left(\mathrm{1},\mathrm{1}\right)\: \\ $$$${and}\:{k}=\mathrm{3} \\ $$$$ \\ $$$${f}\left({x}.{y}.{z}\right)=\:{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} {y}+{yz}−{z}^{\mathrm{4}\:} \:\:{for} \\ $$$${p}=\left(−\mathrm{1},\mathrm{0},\mathrm{1}\right)\:\:{and}\:\:{k}=\mathrm{2} \\ $$$$ \\ $$$${f}\left({x}.{y}.{z}\right)=\:{e}^{{z}} {In}\left({xy}+{z}\right)\:{for}\: \\ $$$${p}=\left(\mathrm{1},\mathrm{2},\mathrm{0}\right)\:\:{and}\:{k}=\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *