Menu Close

if-a-n-b-n-c-n-are-real-sequence-with-a-n-gt-0-b-n-gt-0-c-n-gt-0-and-a-n-n-lt-b-n-lt-c-n-1-n-if-n-0-a-n-converge-and-n-0-c-n-converge-did-n-0-b-n-converge




Question Number 672 by 123456 last updated on 21/Feb/15
if a_n ,b_n ,c_n  are real sequence with  a_n >0,b_n >0,c_n >0  and  a_n ^n <b_n <c_n ^(1/n)   if Σ_(n=0) ^(+∞) a_n  converge and Σ_(n=0) ^(+∞) c_n  converge  did Σ_(n=0) ^(+∞) b_n  converge?
$${if}\:{a}_{{n}} ,{b}_{{n}} ,{c}_{{n}} \:{are}\:{real}\:{sequence}\:{with} \\ $$$${a}_{{n}} >\mathrm{0},{b}_{{n}} >\mathrm{0},{c}_{{n}} >\mathrm{0} \\ $$$${and} \\ $$$${a}_{{n}} ^{{n}} <{b}_{{n}} <{c}_{{n}} ^{\mathrm{1}/{n}} \\ $$$${if}\:\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{n}} \:{converge}\:{and}\:\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{c}_{{n}} \:{converge} \\ $$$${did}\:\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{b}_{{n}} \:{converge}? \\ $$
Commented by prakash jain last updated on 22/Feb/15
For Σ_(n=1) ^∞ a_n ^n   lim_(n→∞) (a_n ^n )^(1/n) =lim_(n→∞) a_n =0   so this converges.  For Σ_(n=1) ^∞ c_n ^(1/n)   assume c_n =(1/n^2 )  c_n ^(1/n)  does not converge.  Σ_(n=1) ^∞ b_n  cannot conclude as convergent  or divergnt.
$$\mathrm{For}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} ^{{n}} \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\sqrt[{{n}}]{{a}_{{n}} ^{{n}} }=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =\mathrm{0}\: \\ $$$$\mathrm{so}\:\mathrm{this}\:\mathrm{converges}. \\ $$$$\mathrm{For}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{c}_{{n}} ^{\mathrm{1}/{n}} \\ $$$$\mathrm{assume}\:{c}_{{n}} =\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$${c}_{{n}} ^{\mathrm{1}/{n}} \:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}. \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{b}_{{n}} \:\mathrm{cannot}\:\mathrm{conclude}\:\mathrm{as}\:\mathrm{convergent} \\ $$$$\mathrm{or}\:\mathrm{divergnt}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *