Menu Close

ABC-triangle-s-A-B-C-90-prove-that-sin-2-A-sin-2-B-sin-2-C-0-




Question Number 131785 by faysal last updated on 08/Feb/21
ABC triangle′s A+B=C=90° prove that  sin^2 A−sin^2 B+sin^2 C=0
$${ABC}\:{triangle}'{s}\:{A}+{B}={C}=\mathrm{90}°\:{prove}\:{that} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} {A}−{sin}^{\mathrm{2}} {B}+{sin}^{\mathrm{2}} {C}=\mathrm{0} \\ $$
Answered by Dwaipayan Shikari last updated on 08/Feb/21
(a/(sinA))=(b/(sinB))=(c/(sinC))=φ  sin^2 A−sin^2 B+sin^2 C=((a^2 +c^2 −b^2 )/φ^2 )=Φ  A+B=C=(π/2)    ⇒a^2 +c^2 =b^2   Φ=((b^2 −b^2 )/φ^2 )=0
$$\frac{{a}}{{sinA}}=\frac{{b}}{{sinB}}=\frac{{c}}{{sinC}}=\phi \\ $$$${sin}^{\mathrm{2}} {A}−{sin}^{\mathrm{2}} {B}+{sin}^{\mathrm{2}} {C}=\frac{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\phi^{\mathrm{2}} }=\Phi \\ $$$${A}+{B}={C}=\frac{\pi}{\mathrm{2}}\:\:\:\:\Rightarrow{a}^{\mathrm{2}} +{c}^{\mathrm{2}} ={b}^{\mathrm{2}} \\ $$$$\Phi=\frac{{b}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\phi^{\mathrm{2}} }=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *