Menu Close

x-y-R-x-2-y-2-2-proof-3-xy-x-y-xy-x-y-2-2xy-




Question Number 140129 by mathdanisur last updated on 04/May/21
x;y∈R^+  ; x^2 +y^2 =2  proof: 3−xy≥(x+y)(√(xy))+(x−y)^2 ≥2xy
$${x};{y}\in\mathbb{R}^{+} \:;\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$$${proof}:\:\mathrm{3}−{xy}\geqslant\left({x}+{y}\right)\sqrt{{xy}}+\left({x}−{y}\right)^{\mathrm{2}} \geqslant\mathrm{2}{xy} \\ $$
Answered by mr W last updated on 05/May/21
we′ll use a+b≥2(√(ab))    x^2 +y^2 =2  ⇒x=(√2)cos θ>0  ⇒y=(√2)sin θ>0    (x+y)(√(xy))+(x−y)^2   =(√2)(cos θ+sin θ)(√(2cos θsin θ))+2(cos θ−sin θ)^2   =(cos θ+sin θ)2(√(cos θsin θ))+2−4cos θsin θ  ≤(cos θ+sin θ)(cos θ+sin θ)+2−4cos θsin θ  =1+2cos θsin θ+2−4cos θsin θ  =3−2cos θsin θ  =3−xy    (x+y)(√(xy))+(x−y)^2   =(cos θ+sin θ)2(√(cos θsin θ))+2−4cos θsin θ  ≥2(√(cos θsin θ))2(√(cos θsin θ))+2−4cos θsin θ  =4cos θsin θ+2−4cos θsin θ  =2  ≥2 sin 2θ=2×2cos θsin θ  =2xy
$${we}'{ll}\:{use}\:{a}+{b}\geqslant\mathrm{2}\sqrt{{ab}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{2}}\mathrm{cos}\:\theta>\mathrm{0} \\ $$$$\Rightarrow{y}=\sqrt{\mathrm{2}}\mathrm{sin}\:\theta>\mathrm{0} \\ $$$$ \\ $$$$\left({x}+{y}\right)\sqrt{{xy}}+\left({x}−{y}\right)^{\mathrm{2}} \\ $$$$=\sqrt{\mathrm{2}}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)\sqrt{\mathrm{2cos}\:\theta\mathrm{sin}\:\theta}+\mathrm{2}\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)\mathrm{2}\sqrt{\mathrm{cos}\:\theta\mathrm{sin}\:\theta}+\mathrm{2}−\mathrm{4cos}\:\theta\mathrm{sin}\:\theta \\ $$$$\leqslant\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)+\mathrm{2}−\mathrm{4cos}\:\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{1}+\mathrm{2cos}\:\theta\mathrm{sin}\:\theta+\mathrm{2}−\mathrm{4cos}\:\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{3}−\mathrm{2cos}\:\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{3}−{xy} \\ $$$$ \\ $$$$\left({x}+{y}\right)\sqrt{{xy}}+\left({x}−{y}\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\right)\mathrm{2}\sqrt{\mathrm{cos}\:\theta\mathrm{sin}\:\theta}+\mathrm{2}−\mathrm{4cos}\:\theta\mathrm{sin}\:\theta \\ $$$$\geqslant\mathrm{2}\sqrt{\mathrm{cos}\:\theta\mathrm{sin}\:\theta}\mathrm{2}\sqrt{\mathrm{cos}\:\theta\mathrm{sin}\:\theta}+\mathrm{2}−\mathrm{4cos}\:\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{4cos}\:\theta\mathrm{sin}\:\theta+\mathrm{2}−\mathrm{4cos}\:\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{2} \\ $$$$\geqslant\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2}×\mathrm{2cos}\:\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{2}{xy} \\ $$
Commented by mathdanisur last updated on 05/May/21
cool thankyou sir
$${cool}\:{thankyou}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *