Question Number 9286 by suci last updated on 28/Nov/16
$${find}\:{the}\:{determinant}\:{of}\:{the}\:{matrix}\:{below} \\ $$$$\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{4}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{5}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$
Answered by mrW last updated on 28/Nov/16
$$=\mathrm{5}×\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{4}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$$$=\mathrm{5}×\left(−\mathrm{4}\right)×\begin{vmatrix}{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{0}}\\{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}\end{vmatrix} \\ $$$$=\mathrm{5}×\left(−\mathrm{4}\right)×\mathrm{3}×\begin{vmatrix}{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{2}}&{\mathrm{0}}\end{vmatrix} \\ $$$$=\mathrm{5}×\left(−\mathrm{4}\right)×\mathrm{3}×\left(−\mathrm{2}×\mathrm{1}\right) \\ $$$$=\mathrm{120} \\ $$