Question Number 74890 by abdomathmax last updated on 03/Dec/19
$${find}\:\int\:\:\:\left({x}+\mathrm{3}\right)\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}{dx} \\ $$
Commented by mathmax by abdo last updated on 04/Dec/19
$${let}\:{I}\:=\int\:\left({x}+\mathrm{3}\right)\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}{dx}\:\:{changement}\:\sqrt{{x}−\mathrm{1}}={t}\:{give} \\ $$$${x}−\mathrm{1}={t}^{\mathrm{2}} \:\Rightarrow{I}\:=\int\left({t}^{\mathrm{2}} +\mathrm{4}\right){t}\sqrt{\mathrm{2}−\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int\:\:\left({t}^{\mathrm{2}} +\mathrm{4}\right){t}^{\mathrm{2}} \sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt}\:=_{{t}={sinu}} \:\:\mathrm{2}\:\int\:\:\left({sin}^{\mathrm{2}} {u}\:+\mathrm{4}\right){sin}^{\mathrm{2}} {u}\:{cosu}\:{cosu}\:{du} \\ $$$$=\mathrm{2}\:\int\:\:\left({sin}^{\mathrm{4}} {u}\:+\mathrm{4}{sin}^{\mathrm{2}} {u}\right){cos}^{\mathrm{2}} {u}\:{du} \\ $$$$=\mathrm{2}\:\int\:\:{sin}^{\mathrm{4}} {u}\:{cos}^{\mathrm{2}} {udu}\:\:+\mathrm{8}\:\int\:\:{sin}^{\mathrm{2}} {u}\:{cos}^{\mathrm{2}} {u}\:{du}\:{we}\:{have} \\ $$$$\int\:\:{sin}^{\mathrm{2}} {u}\:{cos}^{\mathrm{2}} {u}\:{du}\:=\frac{\mathrm{1}}{\mathrm{4}}\int\:\:{sin}^{\mathrm{2}} \left(\mathrm{2}{u}\right){du}\:=\frac{\mathrm{1}}{\mathrm{4}}\int\:\frac{\mathrm{1}−{cos}\left(\mathrm{4}{u}\right)}{\mathrm{2}}{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int\left(\mathrm{1}−{cos}\left(\mathrm{4}{u}\right)\right){du}\:=\frac{{u}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{32}}{sin}\left(\mathrm{4}{u}\right)\:+{c} \\ $$$$=\frac{{arcsint}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{32}}{sin}\left(\mathrm{4}{arcsint}\right)\:+{c} \\ $$$$=\frac{{arcsin}\left(\sqrt{{x}−\mathrm{1}}\right)}{\mathrm{8}}\:−\frac{\mathrm{1}}{\mathrm{32}}{sin}\left(\mathrm{4}\:{arcsin}\left(\sqrt{{x}−\mathrm{1}}\right)\right)\:+{c} \\ $$$$\int\:{sin}^{\mathrm{4}} {u}\:{cos}^{\mathrm{2}} {u}\:{du}\:\:=\int\left(\frac{\mathrm{1}−{cos}\left(\mathrm{2}{u}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \:{cos}^{\mathrm{2}} {u}\:{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\int\:\:\:\left(\mathrm{1}−\mathrm{2}{cos}\left(\mathrm{2}{u}\right)\:+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{u}\right)}{\mathrm{2}}\right)\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{u}\right)}{\mathrm{2}}\right){du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\:\int\:\left(\:\mathrm{3}−\mathrm{4}{cos}\left(\mathrm{2}{u}\right)\:+{cos}\left(\mathrm{4}{u}\right)\right)\left(\mathrm{1}+{cos}\left(\mathrm{2}{u}\right)\right){du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\:\int\left(\mathrm{3}−\mathrm{4}{cos}\left(\mathrm{2}{u}\right)+{cos}\left(\mathrm{4}{u}\right)\right){du}\:+\frac{\mathrm{1}}{\mathrm{16}}\:\int\:\left(\mathrm{3}{cos}\left(\mathrm{2}{u}\right)−\mathrm{4}{cos}^{\mathrm{2}} \left(\mathrm{2}{u}\right)+{cos}\left(\mathrm{4}{u}\right){cos}\left(\mathrm{2}{u}\right)\right){du} \\ $$$$=\frac{\mathrm{3}{u}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{8}}{sin}\left(\mathrm{2}{u}\right)\:+\frac{\mathrm{1}}{\mathrm{64}}{sin}\left(\mathrm{4}{u}\right)\:\:+\frac{\mathrm{3}}{\mathrm{32}}{sin}\left(\mathrm{2}{u}\right)−\frac{\mathrm{1}}{\mathrm{4}}\int\left(\mathrm{1}+{cos}\left(\mathrm{4}{u}\right)\right){du} \\ $$$$+\frac{\mathrm{1}}{\mathrm{32}}\:\int\:\left({cos}\left(\mathrm{6}{u}\right)\:+{cos}\left(\mathrm{2}{u}\right)\right){du}=…{rest}\:{to}\:{finich}\:{the}\:{calculus}…. \\ $$$$ \\ $$
Answered by MJS last updated on 03/Dec/19
$$\int\left({x}+\mathrm{3}\right)\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}{dx}= \\ $$$$=\int\left({x}+\mathrm{3}\right)\sqrt{\frac{\mathrm{1}}{\mathrm{4}}−\left({x}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}−\mathrm{3}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int\left({t}+\mathrm{9}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int{t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt}+\frac{\mathrm{9}}{\mathrm{8}}\int\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{arcsin}\:{t}\:\rightarrow\:{dt}=\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }{du}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int\mathrm{sin}\:{u}\:\mathrm{cos}^{\mathrm{2}} \:{u}\:{du}+\frac{\mathrm{9}}{\mathrm{8}}\int\mathrm{cos}^{\mathrm{2}} \:{u}\:{du}= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{24}}\mathrm{cos}^{\mathrm{3}} \:{u}+\frac{\mathrm{9}}{\mathrm{16}}\left({u}+\mathrm{sin}\:{u}\:\mathrm{cos}\:{u}\right)= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{24}}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} +\frac{\mathrm{9}}{\mathrm{16}}{t}\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }+\frac{\mathrm{9}}{\mathrm{16}}\mathrm{arcsin}\:{t}\:= \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{24}}{t}^{\mathrm{2}} +\frac{\mathrm{9}}{\mathrm{16}}{t}−\frac{\mathrm{1}}{\mathrm{24}}\right)\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }+\frac{\mathrm{9}}{\mathrm{16}}\mathrm{arcsin}\:{t}\:= \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{4}}{x}−\frac{\mathrm{65}}{\mathrm{24}}\right)\sqrt{\left({x}−\mathrm{1}\right)\left(\mathrm{2}−{x}\right)}+\frac{\mathrm{9}}{\mathrm{16}}\mathrm{arcsin}\:\left(\mathrm{2}{x}−\mathrm{3}\right)\:+{C} \\ $$
Commented by mathmax by abdo last updated on 03/Dec/19
$${thank}\:{you}\:{sir}\:{mjs} \\ $$