Menu Close

calculate-lim-x-0-ln-x-1-sin-pix-xsin-2x-




Question Number 66304 by mathmax by abdo last updated on 12/Aug/19
calculate lim_(x→0)    ((ln(x+1+sin(πx)))/(xsin(2x)))
$${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{ln}\left({x}+\mathrm{1}+{sin}\left(\pi{x}\right)\right)}{{xsin}\left(\mathrm{2}{x}\right)} \\ $$
Answered by kaivan.ahmadi last updated on 12/Aug/19
≡lim_(x→0) ((ln(x+1+πx))/(2x^2 )) =^(hop) lim_(x→0)  ((1+π)/(4x(x+1+πx)))=   { ((x→0^+ : ((1+π)/0^+ )=+∞)),((x→0^− : ((1+π)/0^− )=−∞)) :}
$$\equiv{lim}_{{x}\rightarrow\mathrm{0}} \frac{{ln}\left({x}+\mathrm{1}+\pi{x}\right)}{\mathrm{2}{x}^{\mathrm{2}} }\:\overset{{hop}} {=}{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}+\pi}{\mathrm{4}{x}\left({x}+\mathrm{1}+\pi{x}\right)}= \\ $$$$\begin{cases}{{x}\rightarrow\mathrm{0}^{+} :\:\frac{\mathrm{1}+\pi}{\mathrm{0}^{+} }=+\infty}\\{{x}\rightarrow\mathrm{0}^{−} :\:\frac{\mathrm{1}+\pi}{\mathrm{0}^{−} }=−\infty}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *