Menu Close

the-velocities-of-air-particles-above-and-below-the-wing-of-an-aircraft-speeding-down-the-runway-at-a-given-instant-are-210m-s-and-200m-s-respectively-If-the-density-of-air-is-1-2kg-m-3-what-is-




Question Number 140869 by jlewis last updated on 13/May/21
the velocities of air particles   above and below the wing of an aircraft   speeding down the runway at a   given instant  are 210m/s and 200m/s   respectively.If the density of air is   1.2kg/m^3 ,what is the pressure   difference between the upper and  lower surface of the wing?
$${the}\:\mathrm{velocities}\:\mathrm{of}\:\mathrm{air}\:\mathrm{particles}\: \\ $$$$\mathrm{above}\:\mathrm{and}\:\mathrm{below}\:\mathrm{the}\:\mathrm{wing}\:\mathrm{of}\:\mathrm{an}\:\mathrm{aircraft} \\ $$$$\:\mathrm{speeding}\:\mathrm{down}\:\mathrm{the}\:\mathrm{runway}\:\mathrm{at}\:\mathrm{a} \\ $$$$\:\mathrm{given}\:\mathrm{instant} \\ $$$$\mathrm{are}\:\mathrm{210m}/\mathrm{s}\:\mathrm{and}\:\mathrm{200m}/\mathrm{s}\: \\ $$$$\mathrm{respectively}.\mathrm{If}\:\mathrm{the}\:\mathrm{density}\:\mathrm{of}\:\mathrm{air}\:\mathrm{is}\: \\ $$$$\mathrm{1}.\mathrm{2kg}/\mathrm{m}^{\mathrm{3}} ,\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{pressure} \\ $$$$\:\mathrm{difference}\:\mathrm{between}\:\mathrm{the}\:\mathrm{upper}\:\mathrm{and} \\ $$$$\mathrm{lower}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the}\:\mathrm{wing}? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by physicstutes last updated on 13/May/21
You might have come across the concept found in Benouli′s equation  P + (1/2)ρv^2  = constant.  which tells us that the relationship between pressure, density and speed is  P = (1/2)ρv^2   so P_(above)  = (1/2)ρv_(above) ^2  = (1/2)(1.2)(210)^2  = 26,460 Pa    P_(below)  = (1/2)ρv_(below) ^2  = (1/2)(1.2)(200)^2  = 24,000 Pa  pressure difference = ΔP = P_(above) −P_(below)  = 26,460 − 24000= 2,460 Pa
$$\mathrm{You}\:\mathrm{might}\:\mathrm{have}\:\mathrm{come}\:\mathrm{across}\:\mathrm{the}\:\mathrm{concept}\:\mathrm{found}\:\mathrm{in}\:\mathrm{Benouli}'\mathrm{s}\:\mathrm{equation} \\ $$$${P}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\rho{v}^{\mathrm{2}} \:=\:\mathrm{constant}. \\ $$$$\mathrm{which}\:\mathrm{tells}\:\mathrm{us}\:\mathrm{that}\:\mathrm{the}\:\mathrm{relationship}\:\mathrm{between}\:\mathrm{pressure},\:\mathrm{density}\:\mathrm{and}\:\mathrm{speed}\:\mathrm{is} \\ $$$${P}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\rho{v}^{\mathrm{2}} \\ $$$$\mathrm{so}\:{P}_{\mathrm{above}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\rho{v}_{\mathrm{above}} ^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}.\mathrm{2}\right)\left(\mathrm{210}\right)^{\mathrm{2}} \:=\:\mathrm{26},\mathrm{460}\:\mathrm{Pa} \\ $$$$\:\:{P}_{\mathrm{below}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\rho{v}_{\mathrm{below}} ^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}.\mathrm{2}\right)\left(\mathrm{200}\right)^{\mathrm{2}} \:=\:\mathrm{24},\mathrm{000}\:\mathrm{Pa} \\ $$$$\mathrm{pressure}\:\mathrm{difference}\:=\:\Delta{P}\:=\:{P}_{\mathrm{above}} −{P}_{\mathrm{below}} \:=\:\mathrm{26},\mathrm{460}\:−\:\mathrm{24000}=\:\mathrm{2},\mathrm{460}\:\mathrm{Pa} \\ $$
Commented by jlewis last updated on 13/May/21
thankz alot
$${thankz}\:{alot} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *