Menu Close

sin-ln-x-dx-Please-




Question Number 141336 by cesarL last updated on 17/May/21
∫sin (ln (x))dx=?  Please
$$\int\mathrm{sin}\:\left(\mathrm{ln}\:\left({x}\right)\right){dx}=?\:\:{Please} \\ $$
Answered by Dwaipayan Shikari last updated on 17/May/21
log(x)=u  ∫e^u sin(u)du=𝚽  =βˆ’e^u cos(u)+∫e^u cos(u)du  =βˆ’e^u cos(u)+e^u sin(u)βˆ’βˆ«e^u sin(u)du  2Ξ¦=e^u (sin(u)βˆ’cos(u))   Ξ¦=e^u (sin(u)βˆ’cos(u))+C  =x(sin(logx)βˆ’cos(logx))+C
$${log}\left({x}\right)={u} \\ $$$$\int{e}^{{u}} {sin}\left({u}\right){du}=\boldsymbol{\Phi} \\ $$$$=βˆ’{e}^{{u}} {cos}\left({u}\right)+\int{e}^{{u}} {cos}\left({u}\right){du} \\ $$$$=βˆ’{e}^{{u}} {cos}\left({u}\right)+{e}^{{u}} {sin}\left({u}\right)βˆ’\int{e}^{{u}} {sin}\left({u}\right){du} \\ $$$$\mathrm{2}\Phi={e}^{{u}} \left({sin}\left({u}\right)βˆ’{cos}\left({u}\right)\right)\:\:\:\Phi={e}^{{u}} \left({sin}\left({u}\right)βˆ’{cos}\left({u}\right)\right)+{C} \\ $$$$={x}\left({sin}\left({logx}\right)βˆ’{cos}\left({logx}\right)\right)+{C} \\ $$
Answered by qaz last updated on 17/May/21
∫x^(nβˆ’1) dx=(x^n /n)+C  n=1+i  x^i =e^(ilnx) =cos (lnx)+isin (lnx)  (x^n /n)=((1βˆ’i)/2)[cos (lnx)+isin (lnx)]x  β‡’βˆ«sin (lnx)dx=(x/2)[sin (lnx)βˆ’cos (lnx)]+C  βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’  y=lnx  x=e^y   ∫sin (lnx)dx=∫e^y sin ydy  =(1/D)e^y sin y=e^y (1/(D+1))sin y=e^y ((1βˆ’D)/(1βˆ’D^2 ))sin y  =e^y ((1βˆ’D)/(1βˆ’i^2 ))sin y=(e^y /2)(sin yβˆ’cos y)  =(x/2)[sin (lnx)βˆ’cos (lnx)]+C
$$\int{x}^{{n}βˆ’\mathrm{1}} {dx}=\frac{{x}^{{n}} }{{n}}+{C} \\ $$$${n}=\mathrm{1}+{i} \\ $$$${x}^{{i}} ={e}^{{ilnx}} =\mathrm{cos}\:\left({lnx}\right)+{i}\mathrm{sin}\:\left({lnx}\right) \\ $$$$\frac{{x}^{{n}} }{{n}}=\frac{\mathrm{1}βˆ’{i}}{\mathrm{2}}\left[\mathrm{cos}\:\left({lnx}\right)+{i}\mathrm{sin}\:\left({lnx}\right)\right]{x} \\ $$$$\Rightarrow\int\mathrm{sin}\:\left({lnx}\right){dx}=\frac{{x}}{\mathrm{2}}\left[\mathrm{sin}\:\left({lnx}\right)βˆ’\mathrm{cos}\:\left({lnx}\right)\right]+{C} \\ $$$$βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’ \\ $$$${y}={lnx} \\ $$$${x}={e}^{{y}} \\ $$$$\int\mathrm{sin}\:\left({lnx}\right){dx}=\int{e}^{{y}} \mathrm{sin}\:{ydy} \\ $$$$=\frac{\mathrm{1}}{{D}}{e}^{{y}} \mathrm{sin}\:{y}={e}^{{y}} \frac{\mathrm{1}}{{D}+\mathrm{1}}\mathrm{sin}\:{y}={e}^{{y}} \frac{\mathrm{1}βˆ’{D}}{\mathrm{1}βˆ’{D}^{\mathrm{2}} }\mathrm{sin}\:{y} \\ $$$$={e}^{{y}} \frac{\mathrm{1}βˆ’{D}}{\mathrm{1}βˆ’{i}^{\mathrm{2}} }\mathrm{sin}\:{y}=\frac{{e}^{{y}} }{\mathrm{2}}\left(\mathrm{sin}\:{y}βˆ’\mathrm{cos}\:{y}\right) \\ $$$$=\frac{{x}}{\mathrm{2}}\left[\mathrm{sin}\:\left({lnx}\right)βˆ’\mathrm{cos}\:\left({lnx}\right)\right]+{C} \\ $$
Commented by cesarL last updated on 17/May/21
I couldnβ€²t understand
$${I}\:{couldn}'{t}\:{understand} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *