Menu Close

Prove-that-lim-0-1-x-ln-x-




Question Number 10564 by FilupS last updated on 18/Feb/17
Prove that:  lim_(ε→0) ((−1+x^ε )/ε) = ln(x)
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\epsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{1}+{x}^{\epsilon} }{\epsilon}\:=\:\mathrm{ln}\left({x}\right) \\ $$
Answered by lee last updated on 21/Feb/17
    lim_(ε→0) ((x^ε −1)/(ε−0))=(∂f/∂ε)(x,0),f(x,ε)=x^ε   (d/dε)x^ε =(d/dε)e^(εln x) =(d/dε)(εln x)e^(εln x)   =x^ε ln x  ∴ε→0, ln x
$$ \\ $$$$ \\ $$$$\underset{\varepsilon\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\varepsilon} −\mathrm{1}}{\varepsilon−\mathrm{0}}=\frac{\partial{f}}{\partial\varepsilon}\left({x},\mathrm{0}\right),{f}\left({x},\varepsilon\right)={x}^{\varepsilon} \\ $$$$\frac{{d}}{{d}\varepsilon}{x}^{\varepsilon} =\frac{{d}}{{d}\varepsilon}{e}^{\varepsilon\mathrm{ln}\:{x}} =\frac{{d}}{{d}\varepsilon}\left(\varepsilon\mathrm{ln}\:{x}\right){e}^{\varepsilon\mathrm{ln}\:{x}} \\ $$$$={x}^{\varepsilon} \mathrm{ln}\:{x} \\ $$$$\therefore\varepsilon\rightarrow\mathrm{0},\:\mathrm{ln}\:{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *