Menu Close

how-to-find-x-2048-x-2048-if-x-x-1-5-1-2-




Question Number 76431 by john santu last updated on 27/Dec/19
how to find x^(2048)  + x^(−2048)   if  x+x^(−1) =(((√5)+1)/2)
$${how}\:{to}\:{find}\:{x}^{\mathrm{2048}} \:+\:{x}^{−\mathrm{2048}} \\ $$$${if}\:\:{x}+{x}^{−\mathrm{1}} =\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathmax by abdo last updated on 28/Dec/19
we have x+x^(−1)  =((1+(√5))/2) ⇒(x+x^(−1) )^n  =(((1+(√5))/2))^n  ⇒  Σ_(k=0) ^n  C_n ^k  x^k  (x^(−1) )^(n−k)  =(((1+(√5))/2))^n  ⇒  Σ_(k=0) ^n  C_n ^k  x^k  x^(k−n)  =(((1+(√5))/2))^n   ⇒Σ_(k=0) ^n  C_n ^k  x^(2k)  =(((1+(√5))/2))^n  x^n   change x by (1/x) ⇒Σ_(k=0) ^n  x^(−2k)  =(((1+(√5))/2))^(n ) x^(−n)  ⇒  Σ_(k=0) ^n  C_n ^k x^(2k)  +Σ_(k=0) ^n  C_n ^k  x^(−2k)  =(((1+(√5))/2))^n (x^n  +x^(−n) ) ⇒  x^n  +x^(−n ) =((Σ_(k=0) ^n  C_n ^k  x^(2k)  +Σ_(k=0) ^n  C_n ^k  x^(−2k) )/((((1+(√5))/2))^n )) =(((x^2 +1)^n  +(x^(−2)  +1)^n )/((((1+(√5))/2))^n )) ⇒  x^(2048)  +x^(−2048)   =(((1+x^2 )^(2048)  +(1+x^(−2) )^(2048) )/((((1+(√5))/2))^(2048) ))
$${we}\:{have}\:{x}+{x}^{−\mathrm{1}} \:=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\Rightarrow\left({x}+{x}^{−\mathrm{1}} \right)^{{n}} \:=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \:\left({x}^{−\mathrm{1}} \right)^{{n}−{k}} \:=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \:{x}^{{k}−{n}} \:=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \:\:\Rightarrow\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{\mathrm{2}{k}} \:=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \:{x}^{{n}} \\ $$$${change}\:{x}\:{by}\:\frac{\mathrm{1}}{{x}}\:\Rightarrow\sum_{{k}=\mathrm{0}} ^{{n}} \:{x}^{−\mathrm{2}{k}} \:=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}\:} {x}^{−{n}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} {x}^{\mathrm{2}{k}} \:+\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{−\mathrm{2}{k}} \:=\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \left({x}^{{n}} \:+{x}^{−{n}} \right)\:\Rightarrow \\ $$$${x}^{{n}} \:+{x}^{−{n}\:} =\frac{\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{\mathrm{2}{k}} \:+\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{−\mathrm{2}{k}} }{\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} }\:=\frac{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} \:+\left({x}^{−\mathrm{2}} \:+\mathrm{1}\right)^{{n}} }{\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} }\:\Rightarrow \\ $$$${x}^{\mathrm{2048}} \:+{x}^{−\mathrm{2048}} \:\:=\frac{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2048}} \:+\left(\mathrm{1}+{x}^{−\mathrm{2}} \right)^{\mathrm{2048}} }{\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{2048}} } \\ $$
Answered by Kunal12588 last updated on 27/Dec/19
x+x^(−1) =(((√5)+1)/2)  x^2 +2+x^(−2) =((6+2(√5))/4)=((3+(√5))/2)  x^2 +x^(−2) =(((√5)−1)/2)  x^4 +x^(−4) =((6−2(√5))/4)−2=−((1+(√5))/2)  x^8 +x^(−8) =(((√5)−1)/2)  x^(16) +x^(−16) =−((1+(√5))/2)  ⋮  x^(2048) +x^(−2048) =(((√5)−1)/2)
$${x}+{x}^{−\mathrm{1}} =\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}+{x}^{−\mathrm{2}} =\frac{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}=\frac{\mathrm{3}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{x}^{−\mathrm{2}} =\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +{x}^{−\mathrm{4}} =\frac{\mathrm{6}−\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{4}}−\mathrm{2}=−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${x}^{\mathrm{8}} +{x}^{−\mathrm{8}} =\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$$${x}^{\mathrm{16}} +{x}^{−\mathrm{16}} =−\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\vdots \\ $$$${x}^{\mathrm{2048}} +{x}^{−\mathrm{2048}} =\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by john santu last updated on 27/Dec/19
thanks sir
$${thanks}\:{sir} \\ $$
Commented by mr W last updated on 27/Dec/19
what if it is to find x^(2020) +x^(−2020)  ?
$${what}\:{if}\:{it}\:{is}\:{to}\:{find}\:{x}^{\mathrm{2020}} +{x}^{−\mathrm{2020}} \:? \\ $$
Commented by Kunal12588 last updated on 27/Dec/19
I can find x  x=(((1+(√5))±i(√(2(√5)((√5)−1))))/4)  but how to get x^(2020)  and  (1/x^(2020) )?
$${I}\:{can}\:{find}\:{x} \\ $$$${x}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)\pm{i}\sqrt{\mathrm{2}\sqrt{\mathrm{5}}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}}{\mathrm{4}} \\ $$$${but}\:{how}\:{to}\:{get}\:{x}^{\mathrm{2020}} \:{and}\:\:\frac{\mathrm{1}}{{x}^{\mathrm{2020}} }? \\ $$
Commented by Kunal12588 last updated on 27/Dec/19
f_n =x^n +x^(−n)   given : f_1 =(((√5)+1)/2)  find:  f_(2048) ,f_(2020)  and f_n
$${f}_{{n}} ={x}^{{n}} +{x}^{−{n}} \\ $$$${given}\::\:{f}_{\mathrm{1}} =\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$$${find}:\:\:{f}_{\mathrm{2048}} ,{f}_{\mathrm{2020}} \:{and}\:{f}_{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *